Using the complex exponential, we can identify the relation between the trigonometric functions (sin,cos,tan) and their hyperbolic equivalent (sinh,cosh,tanh)
Sin & Sinh §
We can use the definition of the complex exponential to transform sin to sinh
{eiθ=cos(θ)+isin(θ)e−iθ=cosθ−isin(θ)(1)(2)
(1) − (2)→eiθ−e−iθ
=cos(θ)−cos(θ)+isin(θ)+isin(θ)=2isin(θ)
2isin(θ)=eiθ−e−iθ
isin(θ)=21(eiθ−e−iθ)
sin(θ)=21(eiθ−e−iθ)
isin(θ)=sinh(iθ)
Cos & Cosh §
A similar approach can be used for cos and cosh:
{eiθ=cos(θ)+isin(θ)e−iθ=cosθ−isin(θ)(1)(2)
(1) + (2)→eiθ+e−iθ
=cos(θ)+cos(θ)+isin(θ)−isin(θ)=2cos(θ)
2cos(θ)=eiθ+e−iθ
cos(θ)=21(eiθ+e−iθ)
cos(θ)=cosh(iθ)
Tan & Tanh §
We can combine the methods used to obtain sinh-sin and cosh-cos to get the relationship between tanh and tan.
{eiθ=cos(θ)+isin(θ)e−iθ=cosθ−isin(θ)(1)(2)
(1) + (2)(1) − (2)=eiθ+e−iθeiθ−e−iθ=tanh(iθ)
But we also know that:
eiθ+e−iθeiθ−e−iθ=2cos(θ)2isin(θ)=itan(θ)
Hence:
itan(θ)=tanh(iθ)