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1.1
Why Study Algorithmics
There is very simple answer to the question "why study algorithms?" Because we need to get things
done! Algorithms are really just precise descriptions how a specific task has to be performed, or a
particular type of problem can be solved.

It is easy to see why we need to have a precise description, in the case where we get a computer to
perform the hard work for us. As you know, it needs a program, i.e.
a description of how to perform the task. A program is what you get when you adapt an algorithm to a
particular programming language and a particular kind of machine.

But the situation is no different when a human is doing the work. At some point, the human needs to be
taught how to tackle this particular type of task, and to do so the procedure needs to be described
precisely.

Some examples
You have encountered many examples of this already. One of the earliest examples would have been
learning addition in primary school, even though your teacher probably did not use the word "algorithm".

The standard method for addition is to align the numbers according to place value and then to perform
column-wise single digit additions working right-to-left. For the student to learn this method it needs to be
described in full detail, step by step. In other words, it needs to be expressed as an algorithm.

It is generally straightforward to describe such problem-solving procedures. Or is it? Try the following
activity and decide for yourself: Being Harry Houdini

Clearly, we would prefer to have reproducible procedures or "recipes" for problems of all levels of
complexity. Consider a project manager who has to figure out how long a new project will take, given all
the sub-projects, and the time required for each one. Some can be done in parallel, but maybe not all. An
informed guess is not good enough when there's a firm delivery date. Surely the project manager would
be happier to follow a set procedure to find the answer rather than having to figure out a way of solving
this problem every time a new project has to be handled.

Is it correct? Are you sure? Could it be faster?
It is crucial that our algorithms allow us to perform our tasks reliably. We'd like to be confident that the
algorithm delivers the correct solution in all cases. Mistakes could be costly, or even fatal in extreme
cases. If we want to be assured that the algorithm will deliver the correct result in all cases, we have to be
able to reason mathematically about an algorithm before we trust it. It is simply impossible to test all
possible cases even with a lot of time at disposal: there are usually infinitely many. Thus, we need to
prove correctness. Algorithmics provides a formal way to do this.
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But we are not only interested in correctness. We would also like to perform our tasks efficiently. A large
part of Algorithmics is thus concerned with studying the resources that the algorithm requires, such as
the time that it takes to run, or the amount of memory that it will consume. Here too, we need to study
the efficiency of an algorithm mathematically, without having to test all possible cases. Complexity
theory, another core part of Algorithmics, deals with these questions.

Abstraction and abstract reasoning are thus at the core of Algorithmics.

Algorithmic problem solving
This new approach to reasoning is a powerful way to approach problem solving in general. When viewed
abstractly like this, seemingly unrelated problems turn out to have deep structural similarities. This
enables us to solve them in similar ways. Such general approaches to problem solving are called
algorithm design patterns or design paradigms. They provide powerful tools that often allow us to
construct efficient algorithms for problems that may appear extremely difficult at first sight.

Algorithmics could thus be defined as the art and science of constructing efficient formal procedures for
problem solving and the study of their properties central properties: correctness and efficiency.

It should be evident that Algorithmics is at the heart of Computer Science. However, it is of more general
interest than this even. Whenever we face a new type of problem, Algorithmics provides us with a
powerful conceptual framework to tackle it.

There is another reason to study Algorithmics. It is fun, and it is intellectually challenging-just like solving
the logical puzzles in the Sunday paper only much more useful!
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1.2
What is an Algorithm?

The basic idea
This video by Alan Dorin explains the basic concept without getting too technical.

(https://www.alexandriarepository.org/wp-content/uploads/WhatIsAlgorithm-Wi-Fi-High.mp4)
License: Copyright © Monash University, unless otherwise stated. All Rights Reserved. (No derivatives)

Activity: Think of some other topic that interests you, and find an algorithm or create one of your
own. Can you write down the sequence of steps?

Official definition
An algorithm is an effective method expressed as a finite list of well-defined instructions for calculating a
function. [Wikipedia (http://en.wikipedia.org/wiki/Algorithm)]

This means that there is a finite sequence of steps that can be followed mechanically to process specified
inputs and correctly produce the expected output.

Activity: Consider the situation of withdrawing money from an ATM, and hypothetical algorithms

https://www.alexandriarepository.org/wp-content/uploads/WhatIsAlgorithm-Wi-Fi-High.mp4
http://en.wikipedia.org/wiki/Algorithm
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for doing this. (Imagine you have written careful instructions for an interstellar visitor who has
never interacted with an ATM before.)

One of the steps of the algorithm is: "raise your arm at a 60 degree angle, and move your
body 10cm forwards, and slowly release your grip on your ATM card"
You interpret "card" to mean a business card or playing card and try to insert that into the
ATM
The ATM displays a message: "No connection, please try again later". Slavishly following the
algorithm, you inspect your watch and see that it is now later (by one second) and re-start
the transaction, over and over again
The ATM displays a message: "Sorry, you have reached your withdrawal limit". However,
you proceed with your transaction and manage to withdraw $100.

Further Reading
Chapter 2 of J. Hromkovic. Algorithmic Adventures: From Knowledge to Magic. Springer-Verlag,
2009.
Chapter 1 of A.K. Dewdney. The New Turing Omnibus: 66 Excursions in Computer Science. W.H.
Freeman, 1993.
Chapter 1 of D. Harel. Computers Ltd. - What They Really Can't Do. Oxford University Press, 2000.
Wikipedia entry on Algorithms (https://en.wikipedia.org/wiki/Algorithm)

https://en.wikipedia.org/wiki/Algorithm


1.3 The Muddy City Problem

6

 

1.3
The Muddy City Problem
[draft for preview only; BM]
Let's get started with designing an algorithm. In this problem, we want to build footpaths to connect the
houses of a village.

(c) csunplugged.org 2010

In the picture above, you see the houses of the village and the paths that could be built between the
houses. They do not exist yet; they are just possible paths at this stage. The cost of building a path is just
the number of stepping stones that it takes to build it, as shown in the picture.

Activity: Using pen and paper, your task is to choose a subset of the paths that need to be
constructed, so that it is possible to get between any pair of houses without getting muddy.
However, we don't just want any solution, but the cheapest one, measured in terms of the total
number of paving stones required.

Construct a network of paths that makes it possible to get from every house to every other.1.
Find the cheapest possible such network (count the number of paving stones it takes to2.
build it).

Writing down the algorithm
How did you solve the muddy city problem?

Activity: Write down the sequence of steps that was required. Now, working with a partner, give a
sequence of instructions to construct the minimum cost network of paths that connects all the
houses. Once you're confident about your method, write down the sequence of steps. Invent a new
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village map and check that your algorithm gives the expected result.

Look at your steps again. Is each step detailed enough that it could be followed mechanically? Now
exchange algorithms with another pair of students. Make up another muddy village map and apply
the other team's algorithm to your map. Observe the other team as they do the same. No one is
permitted to explain anything verbally or give any hints along the way! The written algorithm is
the only source of information about how to solve the problem.

After doing this, you might want to improve the wording of your steps.

A closer look
Inspect the resulting muddy village maps with their paths, and think about the following questions:

For an arbitrarily chosen pair of houses A and B, how many different routes exist between A and B1.
along paved paths?
What happens to the network if one of the paved paths is removed?2.
Can you come up with a starting map for which your algorithm cannot provide a solution?3.

Supposing that you were to add one more paved path to your network. Try this, and observe that it
creates a loop, or cycle. Look at the other paved paths that make up this loop. Pick one at random and
remove it. Is it still possible to reach every house from every other house?

Look at that loop once more. Which path in the loop was the highest cost? Was it the very one that your
algorithm left out?

The Wikipedia definition of algorithm talks about "calculating a function". What function is being
calculated by your muddy city algorithm? Be careful to define the input(s) and output(s) explicitly.

This module was adapted with permission from csunplugged.org (http://csunplugged.org), an exciting
educational program from New Zealand that creates education resources for 'accessible' computer
science.

http://csunplugged.org
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1.4
Algorithmics versus Coding

Coding is not Computer Science
As you may already know, computers can be instructed to carry out their work using a variety of different
programming languages. Some well-known examples are Python, Java, and C++. In fact here are
hundreds of programming languages; more are being developed all the time.

Computers are not like humans. When a computer follows a set of instructions, it does not know what it is
doing. It cannot guess what the coder had in mind and work out how best to interpret the instructions to
get a good result. If you have ever used the Quadratic Formula to solve a quadratic equation you will
already know what this is like. You plug in the values and do some simplifications, painstakingly applying
the rules until an answer pops out at the end. You do not need to know why the Quadratic Formula works.
You can simply apply it, and "turn the handle" (a metaphor that comes from old-style adding machines).

Coding is just like that. We start with a method for solving a problem, i.e. the "algorithm". Coding is the
task of translating the algorithm into the language that the computer can understand. Unlike coding,
Computer Science is concerned with the algorithm itself, regardless of how it is expressed in a particular
programming language. Computer Science can help us identify several different algorithms for solving the
same problem, and help us understand why one algorithm might be more effective in a particular
situation.

Coding: An Example
Suppose that our problem is to process text documents and search for all words that end with "ing". We
might come up with the following simple algorithm:

read the input
break each line into its words
for each word
    if the word ends with "ing"
        print the word

Although these steps are written in plain English, each step is precise, and each one is written on its own
line, sometimes with indentation. This format for writing down an algorithm is known as pseudocode.

If we were to express this algorithm in Python, it would look like this:

import sys
for line in sys.stdin:
    for word in line.split():
        if word.endswith('ing'):
            print word

Don't worry if you do not understand the code above. It is just here to illustrate the increased complexity
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of a program compared with an algorithm. The Python program starts with a line that tells the computer
to use (import) the system library (a collection of standard methods, including one for reading input called
sys.stdin. Even though the rest is somewhat similar to the pseudocode, there are many idiosyncrasies.
You need to get the layout and punctuation exactly right, and you need to know when to use parentheses,
and so on.

Here's the same algorithm expressed in Java. It looks even more complicated.

import java.io.*;
public class IngWords {
    public static void main(String[] args) throws Exception {
        BufferedReader in = new BufferedReader(new
          InputStreamReader(
                 System.in));
        String line = in.readLine();
        while (line != null) {
            for (String word : line.split(" ")) {
                if (word.endsWith("ing"))
                    System.out.println(word);
            }
            line = in.readLine();
        }
    }
}

Although coding is important, and essential if you want to make a computer do something, it involves a
lot of tedious detail and this detail often gets in the way of understanding the algorithm.

If we want to see what is going on, if we want to effectively communicate our ideas about how to solve a
problem, it is better to use pseudocode. In Algorithmics, our challenge is to come up with the pseudocode
for solving a problem. We will also want to be confident that our solution is correct and efficient. Once we
have it, the interesting work has been done, and we can give the solution to a coder who can translate it
into a form that a computer can use directly. For this reason, a subtitle for Algorithmics might be "Think
Before You Code".

Edgy
To enable us to experiment with algorithms and to execute them we will use an algorithm design
environment that has been developed for VCE Algorithmics called Edgy. Edgy is a high-level programming
language. It is so high-level that it looks almost like pseudocode. You can build programs in Edgy by
snapping various building blocks together. The blocks only fit together when it makes sense to do so. For
more information, please see the Edgy tutorials: Programming with Edgy
(https://www.alexandriarepository.org/syllabus/programming-with-edgy/).

Summary
Computer Science is not the same as coding, or programming, or software engineering. Computer Science
is the underlying body of knowledge to be mastered in order to be a competent programmer. It also
provides a generic approach to problem solving that does not have to lead to programs at all.

https://www.alexandriarepository.org/syllabus/programming-with-edgy/
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The difference is stark. It's like the difference between mechanics (physics) and mechanics (car repair).
Or, as one of the most famous computer scientists (Dijkstra) said:

"Computer Science is no more about computers than astronomy is about telescopes."
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1.5
Data: from messy to beautiful
You're probably used to thinking about data as messy. If so, you're probably thinking of experimental
data, the result of making measurements, measurements which do not fit the theory as perfectly as you
might hope. Sometimes, we can work out nice ways to present data (e.g.
http://www.informationisbeautiful.net/), but when we see diagrams like these, we still know that the
underlying data is likely to be complex and messy.

Computer Science gives us a rather different notion of data, one which is more elegant and mathematical.
We don't mean mathematical in the sense of multiplication or division, or other ways to operate on data.
We mean a precise way to structure data. Let's consider some examples to see what is going on here,
and why it matters.

Examples of Types and Operations

Dates
Suppose you are writing a program to analyse historical events, and for each event you would like to
incorporate the date of that event. What is a date? At one level it is a sequence of numbers and slashes,
like "21/9/1997" or "21 September 1997". In the US this may be written "9/21/1997", and in China
"1997/9/21". Of course, even the word "September" may be spelt differently in different languages. This
string representation is not too satisfying because we need to know some context in order to interpret a
date string. It's hard to work out if a pair of date strings refer to the same date. It's extra difficult to work
out the interval between a pair of dates. Simply working out the date of the following day is tricky!

Other way to think about a date is as a triple of three integers, like (21, 9, 1997), along with conventions
about how to print the date for different audiences. Similarly, it could be a dictionary that maps keys to
values: {"day":21, "month":9, "year":1997}. Another popular method is to represent a date as a single
integer, the number of seconds since midnight on 1 January 1970. Can you think of any advantages of this
last representation?

Cards
Suppose you have an algorithm for playing blackjack and you'd like to use it to win some money. Since
your algorithm only improves your chances of winning by 1%, you need to play a lot in order to get the
return that justifies all your work developing the algorithm. So you want to write a program that can play
hundreds of online blackjack games simultaneously. You need to keep track of the cards in your hand.
How would you represent even a single card, like the Four of Spades or the Queen of Hearts? You will
already have guessed that a string like "Four of Spades" is not a good representation. Why not?

In blackjack, a card like the Four of Spades is worth 4 points. The same is true for the Four of Diamonds.
The suit does not matter. Suppose we represent both of these cards as the integer 4. Then it would be
easy to total the cards in a hand to check whether they had exceeded 21, the ideal score. However, your
algorithm involves keeping track of the other cards that have been seen and the order in which they were
seen, so you realise that you do need to pay attention to the suit. What would you do? How can you
capture the full identity of the card, while making it easy to sum the values of cards?

http://www.informationisbeautiful.net/
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Primitive Types and Operations
The above examples illustrate that seemingly-simple types of data can be surprisingly complex! So we
need to go back to basics.

There is a small set of so-called "primitive types" such as integers and strings. Notice how these are the
types we referred to above when we tried to break down date and card information into more basic
components. We can immediately formalise the operations on primitive types. For instance, when we add
two integers, the result must be an integer:

+ : int × int → int

This is a syntactic rule. It uses the times symbol for "Cartesian Product", the set of all combinations of
pairs of integers. It tells us that 1 + 2 is a syntactically well-formed expression and that it produces an
integer:

x = 1 + 2

Since x is an integer, we also know that the following expression is well-formed too, and that y is also an
integer:

y = x + 3

None of this tells us about the meaning (or "semantics") of addition. For this we need further statements
known as axioms, such as the following:

x + 0 = x
x + (y + z) = (x + y) + z
x + y = y + x

This tells us that zero is the additive identity, and that addition is associative and commutative.

Let's think about another primitive type, namely strings. Can you think of a kind of addition operation that
makes sense for strings?

x = "Monty"
y = "Python"
z = x + y

What's the resulting value of z? 1

This operation is known as concatenation. Can you write down the syntax and semantics for string
concatenation?

Check your answers. 2

It's Not What They Look Like
Recall how we considered representing a date string "21 September 1997" using a triple of numbers (21,
9, 1997). This is a possible logical representation to be used by a computer program that is probably more
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convenient for processing than a string. The string has its uses: it is probably a more effective
visualisation of the date.

Data Types
A data type is a set of elements (which may not be finite in size), along with various well-defined
operations on those elements.

The integer data type is the set of integers {…, -2, -1, 0, 1, 2, …} along with operations like addition and
subtraction.

The string data type is the set of possible strings {"", "a", "b", …, "aa", "ab", …} along with various
operations like concatenation. What else do we need to know about strings? Length is useful; it reports an
integer result, and we would write:

len: str → int

This doesn't tell us the semantics of len, just the type of result it produces. Consider how len and
concatenation interact: take two strings x and y, then the length of the concatenation is the sum of the
lengths, i.e. len(x + y) = len(x) + len(y). This is an example of an axiom which ensures that any
implementation of len behaves as we would expect.

By now you should be able to write down the definitions for other string operations. Try this for the
operations in bold below:

reverse("abracadabra") = "arbadacarba"1.
find("rat", "scratch") = 22.
"python"[2] = "t"3.
"foo" + "bar" == "foobar" = True4.

Check your answers 3

More Data Types
We can build up more complex data types out of these elementary ones. For instance, a playing card
could be represented as a pair consisting of a suit (e.g. "hearts") and a value (e.g. 6). This is the complex
type str × int. We will come back to types later on, under the heading of "Abstract Data Types".

(Note that we would have to explicitly include a space if we wanted one, i.e. "Monty" + " " + "Python"
1 "MontyPython"

x + "" = x
x + (y + z) = (x + y) + z

2 + : str × str → str
3 reverse: str → str

find: str × str → int
[]: str × int → str
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==: str × str → bool
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2.1.1
Modelling with Graphs
Graphs are one of the most fundamental and most widely applicable ways of modelling data that exists. A
graph is the mathematical term used to describe a network consisting of a set of entities (or nodes) and
the links between them (or edges). You will already be familiar with various kinds of networks:

social networks, where each person is represented by a node, and where the friendship between
two people is represented by an edge connecting the nodes
the web, consisting of websites (the nodes) and hyperlinks (the edges)
railway networks, consisting of stations and the railway lines that connect them

A very important aspect of modelling with graphs is that a node does not need to represent a physical
entity as in the above examples. A node can also represent an abstract entity, such as a concept, or a
state of affairs. Likewise edges can represent abstract relationships. You are probably already familiar
with some types of such networks:

semantic hierarchies, consisting of concepts (e.g. vertebrate) and the is-a relationship between
them (a vertebrate is a kind of mammal)
mind-maps (https://en.wikipedia.org/wiki/Mind_map), in which each node represents an idea, and edges
represent an is-related-to relationship

We visualise a graph by writing down some nodes (here the names of a few people), and drawing lines
between them.

Here are some more examples of graphs. Can you identify the nodes and edges?

the brain
the food web
a computer network
the airline network

Activity: Can you come up with more examples of graphs or networks? Think about the spread of
an infectious disease. Or the sequence of subjects required to complete the VCE. Or how water
gets to your kitchen tap. Or what is happening when you look up a reference in the back of a book.

Graphs are everywhere!

https://en.wikipedia.org/wiki/Mind_map
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Activity: try to find something that you think can not be represented as a graph. Discuss with a
friend the reasons why you think your example cannot be represented as a graph and see whether
you can find ways around these (perceived) limitations.

Representing the world
A graph is actually a mathematical structure, consisting of a set (the nodes) and a set of links between
pairs of nodes (the edges). So the above graph could be written down as the pair of two sets: <{Lee, Kim,
Sue, Jon}, {<Lee, Sue>, <Lee, Jon>, <Kim, Jon>}>. That's all there is to a graph.

We use graphs to model something of interest in the world, such as a social network. It's important to
distinguish the mathematical model from what it represents. For example, the above graph contains four
nodes, including one called "Kim". The node for Kim corresponds to a person in the real world, but it is not
that person, just a mathematical abstraction. We use the label "Kim" to remind us of what it models.
Similarly, the edge <Kim, Jon> is a mathematical abstraction, and tells us nothing about the nature of the
friendship but just that a friendship exists. Notice that there's not a lot of detail in our model, compared
with the real life situation it represents.

In general, when we solve an real world problem using an algorithm, we start by modelling salient aspects
of the problem using a mathematical structure. Graphs happen to be a general purpose model for
representing real world information. It can be an interesting and non-trivial task deciding how to construct
the abstract mathematical representation of real world problem.

Let's take a quick look at part of the real world (Al-Khwarizmi
(https://en.wikipedia.org/wiki/Mu%E1%B8%A5ammad_ibn_M%C5%ABs%C4%81_al-Khw%C4%81rizm%C4%AB) from whose name the
term Algorithm is derived came from this area). Central Asia consists of six countries. Here they have
been coloured with six different colours.

https://en.wikipedia.org/wiki/Mu%E1%B8%A5ammad_ibn_M%C5%ABs%C4%81_al-Khw%C4%81rizm%C4%AB
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We can represent the countries of Central Asia, and their geographical arrangement, using the following
graph:

In this graph, there is a node for each country.
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What do the edges represent? 1

Now that we have this representation, which can be treated mathematically, we are in a position to think
algorithmically about the geography of these countries and to define algorithms that process it. For
example, we could to apply a "graph colouring algorithm" which tries to assign a colour to each node in
such a way that no two adjacent nodes (nodes connected by an edge) have the same colour. This, by the
way, is one of the most famous algorithmic problems, and we will return to it later.

Activity: How many colours do you need at least to colour the map above such that no two
neighbouring countries have the same color. How many colours do you think will re required in
general for a map with n countries?

Note that our representation would not be useful for other problems, such as ordering the countries by
land area, or working out which country contains the town ofKhiva (al-Khwarizmi's birthplace). Our model
excluded the information we would need in order to perform this task.

Modelling the world with graphs
The following video explains the basic concepts of a graph and how graphs can be used as a versatile
modelling tool.

(https://www.alexandriarepository.org/wp-content/uploads/FIT1042-modelling-the-world-Wi-Fi-High.mp4)
NB. the distance between two nodes in a graph is sometimes called topological distance. This is to
distinguish it from actual distance in the real world. In general, we will use the term distance to mean
topological distance.

https://www.alexandriarepository.org/wp-content/uploads/FIT1042-modelling-the-world-Wi-Fi-High.mp4
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Review
After viewing this video, you should be able to answer the following questions.

Given a pair of nodes n1 and n2 in a graph, what is the maximum number of edges that can exist
between n1 and n2? 2

What does it mean to say that graphs abstract away from irrelevant detail? 3

What is the degree of a node? 4

What is the distance between two nodes in a graph? 5

What is a weighted graph? 6

What is the distance between two nodes in a weighted graph? 7

What does it mean for a graph to be connected? 8

What is a directed graph (digraph)? 9

What is a multigraph? 10

What is the difference between a graph and a visualisation of a graph? 11

Activity: Can you identify some real-world structure and "read off" a graph? (We saw a road map, a
maze, and a ferry route map in the video; so try to think of something different.)

Choosing what to represent: social and antisocial networks
Earlier, we saw a diagram for a simple social network. Here it is again:
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Can you write down this graph using the mathematical notation we saw at the start? Remember, a graph
is defined using two sets, a set of nodes, and a set of edges. Edges can be specified using a pair of nodes,
like <Kim, Jon> or <Jon, Kim> (the order doesn't matter). Write down the above graph using
mathematical notation then refer back to the start of this module to check your work.

For the following you may want to review your understanding of the definition of a set.

Which of the following are sets? {1, 2, 3}, {}, {1, 2, 2} 12

Suppose that all edges were removed from the above graph. What does this look like in the mathematical
notation? 13

Does it still meet the definition of graph? 14

As we saw, the edges are intended to indicate the existence of a friendship. But it does not have to be
that way. Suppose we used the edges to mean that two people dislike each other. We could call this an
antisocial network. What does the absence of an edge mean exactly? (If your answer is "friendship", think
again.) Now, let's use the colouring algorithm to colour this graph:

Now we can interpret the colours as table assignments. Everyone with the colour green (Lee and Kim) is
assigned to the same table, while the others (See and Jon) are each assigned to separate tables. Our
antisocial network representation has allowed us to solve the problem of allocating tables to people at a
social event, where we want to avoid assigning certain people to the same table. Most interestingly, it
allows us to do so with a known standard algorithm (graph colouring), so we have reduced a new problem
to a solved one, simply by change of the representation.

Key points to note here are that:

the same representation was used to mean two different things (friendship vs non-friendship, or
"antipathy")
our choice of representation affects what problems we can solve using the representation
our choice of representation can also affect how we can solve the problem

Another example: the Movie Database
The Movie Database is a collection of movies and TV shows. For each movie or show, it also has
information about the directors and cast members. For each person, you can find out what show they are
in. You can access it at themoviedb.org (http://themoviedb.org/). Take a look, and try to navigate between

http://themoviedb.org/
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people and shows.

If you were representing this information in a database table, it might look like this, and it would go on for
hundreds of thousands of rows.

Show Person
Wild (2014) Reese Witherspoon
Wild (2014) Laura Dern
Gone Girl (2014) Ben Affleck
Gone Girl (2014) Reese Witherspoon
… …
Note that we're simplifying here, e.g. by not specifying the role of the person in the movie. For instance,
Reese Witherspoon was an actor in Wild and a producer for Gone Girl.

Notice that the above table is really just a set of ordered pairs. We can represent this as a graph having
two types of nodes. Can you draw a diagram for the fragment of the movie database that is shown in the
above table? To finish, please take a look at the interface to the social network of the Movie Database
(http://marvl.infotech.monash.edu/webcola/examples/browsemovies.html).

1 The fact that the two countries connected by the edge have a common border.
2 A single edge if the graph is undirected, or two if it is directed.
3 It means that we capture the information that we need to solve a given problem. This may involve summarizing the

original information/data, dropping aspects of it that are not required, etc
4 The number of edges that are incident on it.
5 The lowest number of edges that need to be traversed to get from one node to the other
6 A graph in which each edge is labelled with a (numeric) weight. This may, for example, represent a distance between two

cities in a road network, or the cost of getting from one state to another in a state diagram.
7 The lowest possible sum of the weights of all edges that need to be traversed to get from one node to the other.
8 There is a path between every possible pair of nodes
9 A graph in which the edges have directions (usually depicted by arrows). Thus an edge (A, B) in a directed graph, also

written as A->B, can only be traversed from A to B but not in the opposite direction.
10 A graph that can have multiple edges between the same pair of nodes. In a road network this could, for example, be used

to represent different routes with the same start and end point.
11 A graph is a mathematical structure consiting of two sets: the set of nodes, and the set of edges between them. It's

visualization is a convenient form of writing it in a readable form, but it adds additional (arbitrary) information. For
example, the exact position of nodes and edges are meaningless, so is are the color and shape, and label of a node (if we
give it one) etc.

12 Only the first two. A set can be empty, but it can never contain the same element more than once.
13 The set representing the edges would be an empty set.
14 Yes, it does. A graph can have no edges. It can even have no nodes! (In that case it can however never have edges,

because a graph can only have edges between nodes that it contains).

http://marvl.infotech.monash.edu/webcola/examples/browsemovies.html
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2.1.2
Modelling States of the World

Modelling States
Many real-world problems involve a collection of entities, along with relationships between those entities.
By now you will be quite familiar with these examples:

social networks (node=people, edge=friendship)
movie network (node=movie or person, edge=person is associated with movie)
railway network (node=station, edge=railway line)

In these cases, it is easy to see a correspondence between real-world entities and nodes in the graph, and
the correspondence between real-world relationships and edges in the graph.

However, graphs have much broader applicability.

State Diagrams
A state diagram is a graph that represents the behaviour of a system. State diagrams use different types
of graphical notations, but their common essence always is that the nodes represent a possible state that
the system can be in and edges represent transitions between these states. As a simple example,
consider the following system which has two states, and the transitions between them:

It is easy to find examples of more complex systems. For example, a washing machine allows you to
select from several available "cycles", and each cycle consists of a sequence of steps, such as: wash,
rinse, spin. Some machines have buttons that you can press repeatedly to switch between, say, fast-spin,
normal-spin, and slow-spin. You can see some interesting examples if you search the web for "washing
machine state diagram".

A node in a state diagram represents a particular state of a system, such as the fact that a washing
machine is currently in it's rinse state. However, this concept of "state of a system" is more general, and
can refer to any particular state of affairs in the world. For instance, we can think of "it is Wednesday" or
"it is sunny" as states.

Important: When deciding on what states to use, we need to be careful to model the fact that the real-
world system can only be in one particular configuration at any one time. Imagine that instead of just one
light you now have two that can be switched independently. To draw a state diagram for this "system" of
lights you cannot just duplicate the diagram above. Why? Because we cannot be in two states at the



2.1.2 Modelling States of the World

26

same time. The current node has to capture the entire state of the system (i.e. the state of both lights).
The solution is to have four states:

(light 1 on, light 2 on),1.
(light 1 off, light 2 on),2.
(light 1 on, light 2 off),3.
(light 1 off, light 2 off).4.

Supposing the system we are modelling has two independent dimensions, e.g. day of the week (7
possibilities) and whether it is sunny or not that day (2 possibilities). How many different states do we
need to model such a system? 1 How many reasonable edges would this state diagram have? 2

Activity: There are many more examples of state diagrams. Please take a few moment to research
these and identify what the nodes and edges correspond to. Take care to identify the "system",
the "particular state of a system", and the transitions between states.

a university degree consists of a series of courses that need to be done in sequence, where1.
some are prerequisites of others;
a construction project involves a series of tasks, some of which can be done in parallel, and2.
some of which must be done in series;
a game of tic-tac-toe begins with an empty 3×3 board, and the first player places an O in3.
one of the 9 available spaces, and so on;
an elevator can be called to one or more floors, and people get in and select the floors they4.
want to go to.

Can you think of any more examples of state diagrams?

A linguistic example
To give you an idea of the generality of state diagrams, consider the following example. It can be used to
generate sentences. Each node can be thought of as representing the state you are in when you've just
uttered a particular word, and are about to utter another word that can follow the previous word
(according to the rules of English grammar). The edges are labelled with one or more words that can be
uttered between the given states.
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(This is a particular kind of state graph called a "finite state machine", and it is widely used for language
processing and speech recognition by computer).

1 7 x 2 = 14 states. You must have a separate state for each possible configuration: Sunny Monday, Rainy Monday, Sunny
Tuesday, Rainy Tuesday, etc.

2 If the weather does not change on any given day, you have 7 x 4 = 28 transitions. For each pair of consecutive days you
need for transitions: Sunny Monday -> Sunny Tuesday, Sunny Monday -> Rainy Tuesday, Rainy Monday -> Sunny
Tuesday, Rainy Monday, Rainy Tuesday, etc. If the weather can change on a day, you need to add another 7 x 2 = 14
edges: Sunny Monday -> Rainy Monday, etc.
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2.1.3
Decision Trees

Modelling the Decision Process
How do you decide what to do with your disposable time? Suppose you have a spare evening. What will
you do? Is it more homework, going out with friends, reading a book? Reflect on a recent time when you
made such a decision. What are the factors that influenced your decision? (e.g. mood, weather, whether a
good movie just came out, …). Did you need to weigh up any factors? (e.g. convenience of transport vs
enthusiasm of a friend).

You have probably seen a decision tree in connection with games like 20 Questions, or a dichotomous key
in biology. Here's an example:

Activity: Write down a decision tree to express a process for deciding what to do with a spare
evening. It might have nodes with names like "school-night?" or "went-out-last-night?" Try to
model your decision process as accurately as you can, within the constraints of the decision tree
format. Hint: first enumerate the factors in your decision making, then prioritise them.

Using a decision tree
If we have been given a decision tree, it is a simple matter to apply it. We start at the top, answer the
questions, and work our way down to the "leaves", as shown in the following series of diagrams.

(https://www.alexandriarepository.org/wp-content/uploads/dichotomous4.png)

Note that only one state can be "active". This models the fact that there can only be one answer to the

https://www.alexandriarepository.org/wp-content/uploads/dichotomous4.png
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yes-no question at each stage. (If you wanted to model the possibility that a user doesn't know the
answer to a particular question, you need to add a third "don't know" option at every level, rather than
allow multiple states to be active.)

The size of the tree
Suppose that you're asked to guess a number between 1 and 100, and you can only ask yes-no questions
like "is it less than 50?", or "is it the number 17?" A possible solution would be to ask a series of
questions: "is it the number 1? is it the number 2? is it the number 3?" and so on, a total of 100 questions.
What do we call this kind of solution?

A better solution is to halve the size of the problem at each step, a method known as "divide-and-
conquer". (We'll see more about this in Unit 4). How many yes-no questions do you need in order to
correctly identify the number?

Can you generalise this, and come up with a mathematical expression involving n, where n is the number
of items in the set?
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2.1.3.1
Sorting with Decision Trees

Extension topic: How many decisions do we need to sort
We can use the concept of decision trees to calculate how much work a sorting algorithm must do if it is
only based on direct comparison of two numbers, i.e. the only fundmental type of question we can ask is
"Is x less than y"?

Suppose you were given three unique integers, a, b, and c, and needed to sort them into increasing order.
The leaves of the decision tree are all the possible permutations, i.e. abc, acb, bac, etc. The interior nodes
of a decision tree for this problem will represent questions like "a<b?".

Construct the decision tree for sorting a list of three unique integers.

How many questions do you need to ask, at most, in order to get the three integers into the correct
order?

In general, with n items to sort, we will have n! (n factorial) possible orderings. In order to pick the correct
one, we need to ask enough yes-no questions. The number of questions we will need to ask is going to be
log2(n!).

With the help of Stirling's Approximation (http://en.wikipedia.org/wiki/Stirling%27s_approximation), we can simplify
log2(n!) approximately to k n log(n), where k is a constant. Thus, we know that, in principle, there can be
no algorithm for sorting n items that takes less than k n log(n) steps if it is based on pairwise comparison.
If someone ever claims to have a faster algorithm, it must either contain a bug, or it must rely on a
different operation to make comparisons. Bucket Sort (https://en.wikipedia.org/wiki/Bucket_sort) is one such "faster"
sorting algorithm, it gains speed, but is limited in other ways. What precisely are the limitations of Bucket
Sort?

http://en.wikipedia.org/wiki/Stirling%27s_approximation
https://en.wikipedia.org/wiki/Bucket_sort
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2.1.4
Formal Definition of Graphs
[draft for preview only; BM]

Terminology for Graphs
A graph can be considered as being made up of nodes (also known as vertices) and edges joining some
nodes. It is possible for an edge to have the same source and destination nodes, making it a loop.

There are a number of important specific types of graphs distinguished by their properties:

Undirected graphs make no distinction between direction of travel along edges (both directions
permissible). They simply indicate that two nodes are connected. For instance, if a graph depicts
members of a social network and their friend relationships this would be an undirected graph. If A is a
friend of B then B is also a friend of A (we call this type of relationship symmetric). We typically use
simple lines as edges for undirected graphs.

Directed graphs are are used when the direction of traversal of an edge is important. A typical example
would be a road network which contains one way roads: Just because you can get from A to B does not
mean that you can also go from B to A. Directed edges are typically shown by arrows. Note that we can
always convert an undirected graph into a directed graph: we simply have to replace each undirected
edge by two directed edges.

Simple graphs only have a single edge between any pair of nodes and no self-loops. Non-simple graphs
can include multiple edges between two nodes, and they can include self-loops. We will mostly be
concerned with simple graphs.
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A path between two nodes A and B is a sequence of nodes that are connected so that we can move from
A to B in the graph. The sequence must thus start with A and ends with B such that all adjacent nodes in
the sequence are also adjacent in the graph, i.e. connected by an edge (if this edge is directed, it must
obviously lead from the first to the second). Note that this way of specifying a path is restricted to simple
graphs. In a non-simple graph we would have to include the edges in the path.

A graph is connected if we can find a path between any pair of nodes. In a disconnected graph, at least
two nodes will exist for which this is not possible.

Weighted graphs have a numerical value associated with edges, which may correspond to distances or
costs. For example, if the graph models a road network, a weight may denote distance or travel time.
Unweighted graphs exclude these numerical values.

Labelled (as opposed to unlabelled) graphs use letters or symbols to label nodes or edges such that
specific references can be made.

 (https://www.alexandriarepository.org/wp-content/uploads/2013/08/lecture2graphs5.png)

 
(https://www.alexandriarepository.org/wp-content/uploads/2013/08/lecture2graphs4.png)

A complete graph is a graph that has edges between each pair of nodes. For n nodes we usually
abbreviate it as Kn. For example, K4 is the complete graph with four nodes:

https://www.alexandriarepository.org/wp-content/uploads/2013/08/lecture2graphs5.png
https://www.alexandriarepository.org/wp-content/uploads/2013/08/lecture2graphs5.png
https://www.alexandriarepository.org/wp-content/uploads/2013/08/lecture2graphs4.png
https://www.alexandriarepository.org/wp-content/uploads/2013/08/lecture2graphs4.png
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Trees are graphs that are defined with the following properties:

Simple1.
Connected2.
Contain no circuits3.

Note: A circuit is present in a graph if there exist at least two distinct paths that can be used to go
between the same two nodes. A simple but very crucial property of a tree is the following: whenever you
add an edge between two nodes in a tree you generate a circuit.

Mathematical Notation for Graphs
Mathematically, we can specify a simple, unlabelled graph G as a pair of two sets, a set of nodes N and a
set of edges E:

G=(N, E)

Each node can be specified by an arbitrary unique identifier, for example letters or numbers. Edges can
simply be specified as a pair of node identifiers. In connected graphs we use the convention that the pair
is ordered and the edge is directed from the first node in the pair to the second one.

For example, the complete graph K4 from above can be given as: G=(N, E) with

N={1, 2, 3, 4} and E={(1,2), (1,3), (1,4), (2, 3), (2, 4), (3,4)}.

It could also be specified with any other set of identifier for the nodes, for example

N={a, b, c, d} and E={(a,b), (a,c), (a,d), (b, c), (b, d), (c,d)}.

You may have seen other ways to specify graphs mathematically, for example with a so-called incidence
matrix. For its simplest form we identify the nodes of a directed graph with numbers 1…n and give a
matrix M of zeros and ones such that

This is all the information we need for a directed, unweighted graph.

How would you represent a weighted graph with an incidence matrix? 1

What can you say about the incidence matrix of an undirected graph? 2
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Formal Definition of Trees
Above we have already specified trees as a special for of graph by listing their properties: simple,
connected, and circuit-free. We can give a very elegant alternative definition in the following way: If we
have two trees T1, T2, we can construct a new, bigger one by adding a new root and connecting the roots
of T1 and T2 to the new root.

A graph  is a tree with root a.1.

If  is a tree with root ,  is a tree with root , and  is a2.
unique new node, then

is a tree with root .

Such a definition is called inductive. Such definitions are often very useful when thinking about
algorithms, because they are often constructive: the definition above basically tells us how to build a tree
(and thus gives rise to algorithms that need to construct trees). We will return to this later.

1 Instead of zero/one entries the entry for the edge from i to j would be its weight.
2 Since an undirected graph G is identical to a directed graph H in which each edge of G is twice (once for each direction),

the incidence matrix of an undirected graph must be symmetric (along its diagonal). We thus really only need to
represent either the upper or lower triangular matrix.



2.2 Graph Algorithms: Revisiting the Muddy City

35

 

2.2
Graph Algorithms: Revisiting the Muddy City
[draft for preview only; BM]

Graph Algorithms
We have looked at the questions 'What is an algorithm' and 'what is a graph', so we are now in a position
to put these two together and lay the foundation for the rest of the unit. The question obviously is, "what
is a graph algorithm". We can apply two interpretations: (1) a systematic method to answer a question
about a network or graph or more generally to solve a problem involving a graph; (2) a systematic
method that solves a problem using a network or graph representation. Most graph algorithms exhibit
both interpretations.

Note that some algorithms exhibit one interpretation but not the other. For example, algorithms to
interpret natural language expressions or visual scenes routinely use graph representations internally but
they are not about networks. On the other hand, an algorithm that solves a problem for a network without
using some form of graph representation is difficult to imagine, since the information about the problem
must be captured somewhere after all.

The example that we will discuss now fulfils both criteria: it solves a real-world (toy world) network
problem and it uses a graph representation to do so.

Minimum Spanning Trees
Recall the Muddy City Problem that we have solved informally earlier.

The type of network or graph that we have constructed in the Muddy City example is a known as a
spanning tree. A tree that allows us to reach every node in the graph from every other node.

Let us make this precise (and before we proceed, make sure you know the formal definitions for graphs
set out in the module Formal Definitions of Graphs.

A spanning tree of a simple, connected graph G is a tree that:

Contains all the nodes of G, and1.
All the edges of the tree are edges of G2.

Figure 3. A sample spanning tree (in red) of a graph (in black).
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Start Quiz (https://www.alexandriarepository.org/app/WpProQuiz/3)

Generally a spanning tree is not unique. There can be many spanning trees for a given graph.

An important from of spanning tree is the Minimum Spanning Tree (MST), which is only defined for
weighted graphs. An MST T is a spanning tree such the sum of all edge weights in the graph is as small as
possible.

Strictly speaking mathematicians and computer scientist would not accept this as a strict definition
because "as small as possible" is not well defined. A better definition is the following.

Let w(X) be a function defined on trees that returns the sum of all edge weights in X. Let T be a spanning
tree of G. T is a minimum spanning tree of G if there is no other spanning tree T1 of G with w(T1)<w(T).

Given a graph, how do we find a minimum spanning tree?

Prim's Algorithm
Consider the following algorithm:

https://www.alexandriarepository.org/app/WpProQuiz/3
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It works by growing a spanning tree node-by-node, so that it maintains a partial spanning tree at any
point of time.

This partial spanning tree starts from an arbitrary node. In every step of the algorithm, one new node is
added to the partial spanning tree. This can be done by considering all nodes that are not yet in the
partial spanning tree and that are directly connected to some node in the spanning tree by an edge (i.e.
that are adjacent to some node in the spanning tree). The algorithm picks one such new node and one of
the edges that connect it to the tree and adds these to the partial spanning tree. It proceeds in the same
way until all nodes of the graph have been added to the tree.

The selection of nodes in this algorithm is arbitrary. Different choices may lead to different spanning
trees.

Note that at each stage of the loop we have a tree. Each time through the loop we add a node to the tree.
Since the algorithm only terminates when there are no unconnected nodes, the final result will be a tree
containing all nodes from the original graph.

The visualization below illustrates the construction of a spanning tree. Select a node to see all possible
edges. Click the right arrow symbol to trigger the next step (note that you need to click twice to before
the next edge is added).

Click to open

We can modify this algorithm in a very simple way to obtain the minimum spanning tree. Instead of
picking an arbitrary new node to add to the partial spanning tree, we consider all edges that connect
nodes in the partial spanning tree to nodes outside of it and pick the edge with the lowest edge weight to
extend the partial tree.

(https://www.alexandriarepository.org/wp-content/uploads/Prim-2-Wi-Fi-High.mp4)

This revised Algorithm will always construct the minimum cost spanning tree. It is known as Prim's

https://www.alexandriarepository.org/interactive/10863/
https://www.alexandriarepository.org/interactive/10863/
https://www.alexandriarepository.org/wp-content/uploads/Prim-2-Wi-Fi-High.mp4
http://en.wikipedia.org/wiki/Prim's_algorithm
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Algorithm (http://en.wikipedia.org/wiki/Prim's_algorithm) or as the Prim-Jarnik algorithm. It was discovered by the
Czech mathematician Vojtěch Jarník in 1930, later independently by computer scientist Robert C. Prim in
1957 and rediscovered by Edsger Dijkstra in 1959.

You can explore the algorithm further with a very nice interactive animation available at
http://www.cs.usfca.edu/~galles/visualization/Prim.html.

Intuitively, the algorithm algorithm seems to make sense, but how can we be sure that it always and
without fail constructs the minimum spanning tree? Isn't it possible that the choice of a somewhat longer
edge will later be rewarded by allowing us to use a much cheaper edge at some future point in the
construction? This question, which can be rephrased as "Is the algorithm correct" (i.e. does it always
compute what it is supposed to compute) is the most important question we can ask about an algorithm.
The only way to gain certainty is to prove that the algorithm is correct.

Is Prim's Algorithm Correct?
Prim's method belongs to a special type of algorithms, which are called greedy Algorithms. Such
algorithms proceed by trying to achieve the maximum gain at every single step. They rely on locally
optimal choices and never attempt to work for a "delayed reward", i.e. they never accept a reduced gain
at some step in order to be able to achieve a higher gain later. In the case of Prim's algorithm this means:
we take the cheapest edge immediately (maximum savings). We do not even consider any other edge in
order to potentially make a bigger gain later. Greedy algorithms are short-sighted.

Where they work, greedy algorithms are often very good: making only very few and simple choices they
are typically fast. But how can we be sure that the greedy method works for a given problem?

We can of course test the method on any number of examples actively trying to construct an example
that makes it fail. We can even implement the algorithm as a computer program and do large numbers of
such tests automatically. In this way we can gain confidence that the method works (unless we find an
example to show that it does not always work), but we still cannot be absolutely sure. Maybe we just
didn't find a counter example. This, unfortunately, applies to all forms of testing.

Generally, however, we would like to be sure that our methods work, and in some cases we must be sure:
imagine you are writing a control algorithm for a nuclear power plant or an aircraft landing system.

The only way to be sure is to give a proof. The video below sketches a proof that Prim's algorithm is
definitely correct, i.e. that it produces a Minimum Spanning Tree (don't worry, the video streaming works,
the whiteboard is blank until 0:55). Of course, the video only sketches the proof idea, it is not a full formal
proof. Since we have not yet even learned how to formally write down an algorithm (let alone how to
formally prove a property of an algorithm), we will leave it at that. The important aspect to understand is
that it is possible to prove correctness of an algorithm, and that this is quite different from "testing" it (or
the corresponding program) for a number of cases. So whenever the correctness of our algorithms is
critical (for example, when they control a medical equipment), we will want to be certain that they
function right and only a proof can give us this certainty.

http://en.wikipedia.org/wiki/Prim's_algorithm
http://www.cs.usfca.edu/~galles/visualization/Prim.html
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(https://www.alexandriarepository.org/wp-content/uploads/Proof-Sketch-Prim-Wi-Fi-High.mp4)

Other Minimum Spanning Tree Algorithms
There are a number of other minimum spanning tree algorithms (http://en.wikipedia.org/wiki/Minimum_spanning_tree),
most importantly Kruskal's algorithm (http://en.wikipedia.org/wiki/Kruskal%27s_algorithm) and the Reverse-Deletion
Algorithm.

The Reverse Deletion Algorithm is essentially just the inverse of Prim's algorithm: It starts from the full
graph under consideration and removes edges from it one-by-one.

Which edge should be chosen for removal at each step? 1

If this edge would disconnect the graph it is never considered again and the algorithm proceeds with the
next lower weight.

Kruskal's algorithm grows several independent parts of the graph separately. Thus it does not grow a
single tree but a forest. It picks edges one by one in increasing order starting from the cheapest one.
Unless an edge introduces a circuit, it and the two nodes it connects are added to the growing forest. The
algorithm ends when all nodes have been added and the structure is fully connected, i.e. when the forest
has turned into a single tree.

Kruskal's algorithm is much more involved to implement, but it can be made very fast if implemented
cleverly.

An Inductive Definition of MCSTs Derived from Prim's
Algorithm
When we formally defined the notion of a tree in the module Formal Definitions of graphs, we used an

https://www.alexandriarepository.org/wp-content/uploads/Proof-Sketch-Prim-Wi-Fi-High.mp4
http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Kruskal%27s_algorithm
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inductive definition and noted how an inductive definition can often give direct rise to an algorithm.

Let us illustrate this with a (semi-formal) inductive definition of a minimum spanning tree MST for a graph
G=(V1,E1).

If x is a node in V, then T=({x}, {}) is a partial MST for G.1.
Let T=(V2, E2) be a partial MST of G.2.
Let E3 be the subset of edges E1 that connects nodes in V2 with nodes in V1-V2.
Let e=(x,y) be the edge in E3 with the lowest edge weight.
Then T1=(V2 union {x, y}, E2 union {e}) is a partial MST for G.
Let T=(V2, E2) be a partial MST for G=(V1, E1). If V1=V2 then T is a Minimum Cost Spanning Tree3.
of G.

You can see that this definition directly tells us how Prim's algorithm works! Of course we only know that
this correctly defines a minimum spanning tree, because we have already proven that Prim's algorithm is
correct.

An Application of Minimum Spanning Trees: Creating Mazes
There are many relatively obvious applications of spanning trees that focus on creating fully connected
networks of some type (traffic, social, etc). However, spanning trees also have many less obvious
applications. An entertaining one is the construction of mazes…

Figure 1. A sample maze

Consider the sample maze given in figure 1. This can be simplified (or abstracted) by mapping out the
nodes, as well as the paths between each node. This representation is a tree.

Figure 2. The sample maze now represented as a tree.
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Using the concepts of graphs and spanning trees, it is simple to create a procedure for constructing
mazes:

1. Start off with a full grid as below. This is just another type of graph…

2. Find a spanning tree of the grid

3. Mark entrance and exit vertices.



2.2 Graph Algorithms: Revisiting the Muddy City

42

4. Add in walls and remove the spanning tree

Although this algorithm cannot create mazes of all types (e.g. cannot include a circuit) and is not very
detailed here, it demonstrates the usefulness of graphs as well as how a seemingly difficult problem
(generating a maze) can be reduced to quite a simple algorithm.

Start Quiz (https://www.alexandriarepository.org/app/WpProQuiz/4)

Even though we have explained in natural language (and using drawings) how Prim's Algorithm works,
what we have not done yet is to write it down in a precise way. However, we will delay this a little bit
because we need to develop a language to do so first. Before we do this, let us look at another example of
a very fundamental graph algorithm.

1 Since the algorithm is the dual of Prim's algorithm, it should remove the edge with the highest edge weight provided that
this does not disconnect the graph.

https://www.alexandriarepository.org/app/WpProQuiz/4
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2.3
Searching in networks: a first look

Connectivity
The most basic questions that we can ask about a real-world network are about connectivity: Is there a
bus connection from home to school? Are two points in an electric circuit connected? Is there a chain of
friends on facebook that links me to the person I just met?

The same goes for a graph as an abstract model of information. Its essence is to capture information
about the connections between entities, whether the entities are people, objects, ideas, concepts, … Its
nodes can stand for physical objects (such as cities in a transport network), states (such as in a game
tree) or conceptual entities (such as in a governance chart). The edges always model a physical or
abstract relationship between the nodes.

There are two ways for a pair of nodes, A, B, to be connected. In the simplest case of a direct connection,
we only need to check if there is an edge between A and B. In general, however, we may need to follow a
path through other nodes in order to get from A to B.

Our notion of connectivity here is transitive. This means that if A is connected to B, and B is connected to
C, then A is also connected to C. One point of a social network is to connect people transitively. Thus, if
Chris is a friend of Anna, and Anna is a friend of James, then James belongs to the (extended) network of
Chris' friends, and at some point, they may be introduced and become friends as well.

Suppose that you are the employee of a large company, Exploitation Inc., but you are not very happy in
your job. Having already looked around for other positions you have decided that you would like to work
for Gooditwoshoes & Co. Unfortunately you do not know anyone at Gooditwoshoes who could help you get
a job there. Luckily though, you are a user of a large social network that links professionals (similar to
linkedin.com). The network captures information about people (its users), the companies they work for,
and their roles in the company. Most importantly it also captures links between people (friendships,
professional relationships).

Paths
The theory of "six degrees of separation (http://en.wikipedia.org/wiki/Six_degrees_of_separation)" lets you suspect that
there must be a relatively short chain of direct connections that links you to the CEO of Gooditwoshoes. If
only you knew this chain, you could ask the first person (who you know directly) to introduce you to the
second. Then, once you've met the second you can ask them to introduce you to the third, and so on until
you  get  to  meet  the  influential  CEO herself.  (If  you  are  a  member  of  LinkedIn  you will  notice  that  they
suggest these types of introductions in the sidebar when you access someone's profile).

Such a chain of connections is called a path. You are already used to solving path finding problems in real
life. You do this when you use a map to navigate from one city to another: To get from Melbourne to
Albury  you  first  drive  from  Melbourne  to  Kilmore,  then  from  Kilmore  to  Euroa,  then  from  Euroa  to
Wangaratta, and finally from Wangaratta to Albury. However, there are some important differences when
you find a path on a map. First, you can use some clever way of guessing the right direction, because the
cities have a location in space. In most road networks it is usually a good guess to go in the approximate
direction of your destination if you want to get there quickly.

http://en.wikipedia.org/wiki/Six_degrees_of_separation
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In a social network this is not possible, because the nodes have no physical position. "Distance" in the
immediate (geometric) sense is simply a concept that does not apply. This makes the task much harder.
Secondly, when a human looks at a map he or she always has some kind of global view of the connections
on the map even if it may be partial. You do not have this when you are dealing with a social network. The
only information you can directly obtain are answers to questions of the type: "Are X and Y friends" (i.e. is
there an edge between X and Y) and "Who are the friends of X" (i.e. to which other nodes Y is X adjacent -
connected via an edge). Finding a path using only this information is like trying to find a route on a map of
which you can can only inspect a small window at a time. To make things more difficult, we often have to
deal with huge networks.

What we need is a precise, automated method to automatically find a path in networks of any size based
on such localised information, or else to report that none exists: an algorithm for path finding. How can
we go about designing one?

Path finding
It seems reasonable to start the search for a path from A to B at node A and to first check all immediate
neighbours of A. If we find B as one of the neighbours, our job is done. Otherwise we simply do the same
thing for all the neighbours, i.e. we check their neighbours. If there is a path from A to B we must
ultimately arrive at B.

Why  would  it  be  difficult  to  use  the  method  we  have  just  described  to  search  for  a  path  by  phisically
moving thorugh a network of paths, for example to search for the exit in a maze? 1

This seems easy if we are dealing with a directed acyclic graph.

What additional difficulty would we encounter in an undirected graph? 2

The essential question is thus: how do we keep track of which nodes we have already investigated and
which we need to investigate next, so that we can sequence the visits and do not end up going around in
circles?

We can observe that there are three types of nodes:

Nodes for which we have already processed all neighbours. We will call these "visited" nodes.
Nodes which we have seen as neighbours of other nodes, but that we still have to process. We will
call these "to-be visited" nodes.
Nodes that we have not yet considered at all. We will call these "unvisited" nodes.

We could simply mark these nodes with colours to keep track of what we have done. Let us mark visited
as red, to-be-visited as green, and leave unvisited unmarked.

Let's give it a go:
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(https://www.alexandriarepository.org/wp-content/uploads/FIT1042-first-traversal-Wi-Fi-High.mp4)
Now let's try to express this as an algorithm. It is quite easy to do this, as we are just expressing the steps
in natural language, albeit a slightly formalised style of natural language. Our pseudocode here is quite
verbose, and we will soon see more concise ways of expressing our ideas in pseudocode.

Algorithm search
input: two nodes A, B
output: "yes" if there is a path from A to B, "no" otherwise

mark A green

repeat everything between begin and end
   until there are no green nodes left:
      begin
         let C be an arbitrarily chosen green node
         if C is the same as B answer "yes" as output and stop
         otherwise mark all neighbours of C green
                   unless they are red already
         remove the green mark from C
         mark C red
     end (* of what is repeated *)
answer "no" as output and stop

Note that there is a minor difference between this algorithm and what we have done in the video above.
The algorithm explicitly removes the green mark from a node when it is marked as red. In the video we
didn't do this (because it is too messy on the whiteboard). Thus, whenever we picked a new green node,
we actually had to pick a "green one that is not also marked red".

You could try to rewrite the algorithm above so that it behaves exactly like what we did in the video.

The first three lines of the description give the algorithm a name (so that we can refer to it by name), and
define what it needs to know in order to run (the input) and what it is expected to produce as output. The
remainder details the steps that the algorithm takes. The only tricky bit in the definition are to know what
exactly is repeated, which is why we "bracket" it with the words begin and end. The other important thing

https://www.alexandriarepository.org/wp-content/uploads/FIT1042-first-traversal-Wi-Fi-High.mp4
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is that the instructions tell us to stop the execution as soon as an answer is generated. This is indeed
crucial!

Can you see why this is crucial? 3

This algorithm is an example of a so-called graph traversal. This term simply refers to a systematic
method of visiting all the nodes in a graph in a particular order. Of course, if we terminate the search as
soon as we find the node B, we will not necessarily visit all nodes. Simply omitting the test and
proceeding until no more green nodes are left we are, however, guaranteed to visit all nodes that are
reachable from A.

We had earlier discussed some important properties that graphs can have. Which of these can you test
using this algorithm? 4

How can you extend the algorithm to check whether the graph has cycles? 5

We can even use the algorithm to compute a spanning tree for the graph as the following video shows:

(https://www.alexandriarepository.org/wp-content/uploads/FIT1042-Spanning-Tree-from-Traversal-Wi-Fi-High.mp4)
The video has shown that for one particular instance of a graph, the algorithm will find a spanning tree.
But is this always the case? We can make the following argument:

In a connected graph, there is a path from every node to every other node. The algorithm visits all nodes
to which a path exists from a single, arbitrarily chosen starting node and marks these as green. Thus, in a
connected graph it will mark all nodes in green and it will add one edge for each new node that it colours
such that it is connected to the green nodes so far. Thus is will generate a connected graph that contains
all nodes of the original graph and some (bot not all) edges of the original graph. It will never add an edge
that forms a cycle to a node already visited. Thus the graph formed by the purple edges must be a tree.
As it contains all the nodes of the graph it is a spanning tree.

https://www.alexandriarepository.org/wp-content/uploads/FIT1042-Spanning-Tree-from-Traversal-Wi-Fi-High.mp4
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Alternatively you could look back at the inductive definition of the minimum spanning tree. If you remove
the requirement to pick the cheapest edge from that definition, the algorithm follows exactly the
construction procedure that the inductive definition prescribes!

A shortcoming of our algorithm is that tagging the nodes with colour attributes would in practice be a very
inefficient way to keep track of which nodes we still have to expand.

Why would it be inefficient to use just colour attributes to keep track of visited nodes? 6

Luckily it is easier to make this more efficient and more elegant at the same time.

However, before we can discuss this, we should really need to prepare some groundwork and figure out
how to write algorithms precisely.

1 The method requires us to go to all the neighbours of a node, the to all the neighbours of these neighbours. We must thus
either be able to be at multiple locations simultaneously (unlikely) or we must somehow memorize and sequence these
visits.

2 If there are cycles or undirected edges, we could run into trouble, because we would arrive at locations that we have
already explored before. Unless we take precautions to memorize where we have been already we would thus end up
going around in circles.

3 If the algorithm would not stop after the answer "yes" is produced, it would eventually always answer "no". What the
answer "no" really means in this algorithm is that we have run out of options to check. But this only means that there is
no path if we hadn't found one earlier. Thus the validity of the "no" answer depends on stopping as soon as we have found
a path so that we will never get to this instruction if there is a path.

4 You can use this algorithm to test whether a graph is fully connected: Start at an arbitrary node. If at the end of the
algorithm all nodes are red, the graph is fully connected. If there are white nodes left, it isn't. The algorithm will visit all
nodes in the connected component of the start node. You can also use the algorithm to test whether the graph has any
cycles.

5 You only need to check when adding the neighbours of a current node C if one of these is red already. If so, you had
processed this node before, so you have discovered a cycle.

6 There is no way to directly access a node of a specific colour. Thus to find the next green node (and to find out whether
any green nodes are left) the algorithm would have to search all nodes and check the colour for each of them. Because
this potentially means that we will have to check each and every node this is not an efficient solution.
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2.4
How to write an algorithm
[draft for preview only; BM]

What is pseudocode and why do we use it?
Computer scientists like to use pseudocode for expressing algorithms. Here's an example of pseudocode:

Algorithm mystery1
   input: a list of numbers L
   output: a number, but what does it mean?

   let x := 0
   let n be the number of elements in L
   repeat until the list L is empty
      remove the first element of L and add it to x
   return x/n as the result

Can you guess what this pseudocode does? 1

Here is an example that is slightly more complex.

Algorithm mystery2
   input: a list of numbers L
   output: a number, but what does it mean?

   sort L in ascending order of elements
   let n be the number of elements in L
   if n is odd then
       return the element in position (n/2+0.5) of L
   if n is even then
       let a be the element in position (n/2) of L and
       let b be the element in position (n/2)+1 of L and
       return (a+b)/2 as the result

Can you still find out what the algorithm does? 2

You probably answered both questions above correctly, which shows that pseudocode does indeed serve
a purpose: it lets us communicate with one another, and this is one of the most important considerations
when we are writing algorithms. To quote two famous computer scientists and the authors of one of the
best-known books on programming:

"…a computer language is not just a way of getting a computer to perform operations but rather
that it is a novel formal medium for expressing ideas about methodology. Thus, programs must be
written for people to read, and only incidentally for machines to execute."

from: Structure and Interpretation of Computer Programs,
by Harold Abelson, Gerald Jay Sussman with Julie Sussman

Of course no computer will be able to interpret pseudocode. Which begs the question, why do we not
communicate in real code straight away? There is a seemingly simple answer to this: when writing real
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code we would simply get lost in detail. Consider the Python (https://www.python.org/) code (or rather one
possible form of Python code) for the first example above:

def mean(listOfNumbers):
    if len(listOfNumbers) > 0:
        return float(sum(listOfNumbers)) / len(listOfNumbers)
    else:
        return float('nan')

Even though this is a very simple piece of code, it is much harder to understand.
What do you think, for example, does the "return float(nan)" do? 3

What is worse, the following bit of code, almost the same as the one above, is simply incorrect.

def mean_incorrect(listOfNumbers):
    if len(listOfNumbers) > 0
        return sum(listOfNumbers) / len(listOfNumbers)
    else:
        return float('nan')

Can you spot the differences? 4

Assume the second program (with the syntax error fixed) is called as mean_incomplete([1,2]) to compute
the mean of a list with just the two numbers 1 and 2.
Can you guess what the program would return as a result? 5

"Why", you might object, "this is a contrived example! Who cares whether there is a colon or a semicolon,
I understand the code anyway"… and of course you still know how to read this piece of code even though
the computer wouldn't. "So", you might argue, "we don't need to worry about the character at the end of
the instruction, we still have almost valid code and can communicate with it". But this is a slippery slope.
Real code is at a very well-defined level: A real, existing, precisely defined bit of machinery can execute
it. We can also exactly (!) write down what the code means mathematically (this is an advanced field of
computer science called "programming language semantics"). However, both the attempt to execute our
slightly sloppy bit of "real" Python code on a computer and the mathematically defined semantics would
fail to give us a result for this code fragment. Both need the level of rigour that only a completely and
rigidly defined programming language gives us. If allow we ourselves to choose another character to
terminate a statement, where do we stop? Why not write "As long as" instead of "While"? Why not "Unless
x=0" instead of "If x=!=0"? Once we start to take liberties with the code, where do we stop?
This is exactly why pseudocode exists. There is no defined point where the liberties stop, and there can't
be. If we could precisely define which changes to the code are allowed, we would again have a precisely
defined language (which defeats the purpose). Thus, in pseudocode we only use a vaguely defined level
of language that is based on common sense and the common background of computer scientists. The
idea of writing pseudocode is simply to write things down precisely enough so that the intended reader
can interpret it without any ambiguity, yet to do so at a sufficiently high level of abstraction that allows us
to focus on the salient aspects of the algorithm. There is judgement involved in how precisely we need to
specify something, and as all human judgement, this can fail. This is the price we have to pay for using
pseudocode, and there is no way around it. Yet, most computer scientists agree that it is worthwhile
paying this price, and to write pseudocode as the first step.
To illustrate the point try to find out what the following piece of Python code does:

def find(limit):
    limitn = limit+1
    not_selected = [False] * limitn
    selection = []

    for i in range(2, limitn):
        if not_selected[i]:
            continue

https://www.python.org/
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        for f in xrange(i*2, limitn, i):
            not_selected[f] = True

        selection.append(i)

    return selection

If you understood this piece of code, it's a reasonably safe assumption that you are not new to
programming. If you could not find out consider the following piece of pseudocode instead that describes
the same function:

Input: an integer n > 1

Let A be a list of truth values, indexed by integers 2 to n,
initially all set to true.
for i = 2, 3, 4, ..., not exceeding √n repeat the following
  if A[i] is true then
    set A[j] to false for all j = i2, i2+i, i2+2i, ..., up to n
Output: all i for which A[i] is true.

In identifying the function of this code it may help you to simply execute it yourself for some intermediate
number n (e.g. n=20) and analyse the result.
Can you now guess what the function of the code is? 6

We will also often also use pseudocode in this book. However, since readers will have varying
backgrounds, this can be dangerous territory - what has an obvious meaning for one person may be
unclear to another. Therefore, we will often make use of Edgy code instead of pseudocode. Edgy, as you
may know, is a special educational programming language that is very close to pseudocode. Consider the
simple example of finding the largest element in a list of numbers. In pseudocode we might write the
solution like this:

In Edgy it looks almost the same:



2.4 How to write an algorithm

51

Despite its similarity to pseudocode, Edgy is a real programming language. This has a number of clear
advantages: First, the code is executable, so that you can experiment with it directly. Secondly, the level
of code is entirely well-defined. There is no question about what we are allowed to write down and what
not. However, being real code, it also has the usual disadvantages: Sometimes we do not have the
flexibility to express some new concept at a very high level (this is when we will use pseudocode) and
even though Edgy uses a high level of abstraction, we can still get bogged down in details. However,
using Edgy (or another high level educational language) is a valid middle ground, as you will see. Three
factors make it possible to reach this middle ground:

The visual syntax frees us from the tyranny of having to memorise syntactic details, such as where1.
a semi-colon belongs. The essential rule is "if it snaps it is syntactically correct" .
Much of the functionality of an industrial strength programming environment is stripped from Edgy,2.
to let us focus on algorithm design. You will not be able to build a user interface or to implement
fast numerical methods. Yet, everything that we need for the discussion of network and graph
algorithms is there, and this reduction to the essentials lets us focus on algorithm design.
Some functionality that you will need but for which there is no point now in worrying about the how3.
it is done in detail, is provided in the form of pre-defined libraries and so-called "abstract data
types". We will come back to this point (modularisation, abstraction, and abstract data types) in
detail in a later module.

It is worth noting that the transition to coding in an industrial-strength programming language will be
straightforward once you have understood how to code things in Edgy. Look at the example above and
mentally strip it of the colours and block shapes. What is left is structurally close to the corresponding
Python code…

def maxOfList(list):
   if len(list)==1:
      return list[0]
   else:
      return max(list[0], maxOfList(list[1:]))

For now, let us take a rough and tumble tour of the basic elements of pseudocode. This should enable you
to understand the basics very quickly.
To do so we will incrementally built up an algorithm for the traversals we have developed informally
above.

1 It computes the mean (i.e. the numerical average) of the elements in list. To do so it first sums up the elements in the list
one by one and then divides the result by the numbers of elements.

2 This example computes the median of the list which is defined as the middle element of all elements in the list. If the
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number of elements is even there is no well-defined middle element. In this case the usual convention is to take the
average of the two elements closest to the middle.

3 This line is only executed when the list is empty, i.e. when the mean cannot be computed. "float(nan)" generates an
object that can be used like a number but indicates that in truth it is "Not A Number" (NAN). This is exactly an entirely
straightforward concept! This is used to return the message that no result could be computed.

4 The first difference is that there is a colon missing at the end of line 2. A python compiler (or interpreter) would simply
report an error. It would not understand the program and would refuse to even run it. Such a mistake is called a syntax
error - we did not use the syntax defined for Python correctly and therefore the program cannot be run. But there is also
another difference: in line 3 I omitted to indicate "float" in the division. This causes a problem that represent a semantic
error, an error in the meaning of the program. The program will run just fine, but it will sometimes return a result that is
not what we expect.

5 Strangely it would not return the correct result 1.5 but instead 1. This is because Python thinks we are only working with
whole numbers (integers) and essentially decides for that reason to round down the result. If we indicate that we mean to
work with float and call the program with mean_incomplete([1.0,2.0]) everything works fine! Likewise, everything works
fine in the first version of the code because we indicated in line 3 using the word float that we want to work with real
values (so-called floats). Oh the joys of coding!

6 The code computes all prime numbers up the integer n. It is a version of the so-called "Sieve of Erastosthenes" that you
probably now already. If not you find a detailed description on Wikipedia. The pseudocode above was adapted from this
Wikipedia page.
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2.4.1
Sequences
[draft for preview only; BM]
The fundamental unit of an algorithm are statements or instructions that are put into sequence. Consider
how we visit the next node in the network:

Algorithm next-node1
   find a green node
   mark this node red
   mark all its neighbours green unless they are red already

Each line in this algorithm is a single statement. Statements are put into sequence by which we indicate
that they have to be executed strictly in the order in which they are written down.
What is a statement is not strictly fixed in pseudocode. In principle any instruction may be used that is
well-defined and can be executed in a finite amount of time. While pseudocode gives us the freedom to
invent new statements or statement types as we need them, doing so only results in a meaningful
algorithm if these "made-up" statements can be interpreted and executed unambiguously and without
guessing on the basis of reading the algorithm alone and of agreed upon (!) prior knowledge.
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2.4.2
Variables and Assignments
[draft for preview only; BM]
The first aspect of the above algorithm description that we need to revise is that we have referred to
some entity by using the pronouns "this" or "it". This worked fine above because there was clearly only
one object to refer to, the node that we are marking red. In general, though, if there are multiple objects
this is not a clean way to reference an object. In pseudocode we use variables to refer to specific entities.
You can think of variables as placeholders for objects and values. Alternatively you can think of them as
names for containers that contain such an object or value. Wherever we write the name for the container
(the variable name) we actually mean the object that is currently in the container. There are two
fundamental operations on variables:

We can assign an object or a value to a variable ("put an object into the container") . This is usually1.
written as "x := a" meaning that the variable x is assigned the value a. Before the first assignment
to it, a variable holds no value (i.e. the first use of a variable must always be an assignment).
We can use the object or the value that the variable stands for ("that is in the container") by using2.
the name of the variable instead.

Let's use this to clean up the code above:

Algorithm next-node2
   n := any green node
   mark n red
   mark each neighbour of n green unless it is red already

Much better already!
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2.4.3
Decisions
[draft for preview only; BM]
The second aspect to refine it the instruction "unless it is green already". This statement describes a
decision and we need a well-defined and structured way to express decision - otherwise it will be
impossible to express complex decisions unambiguously.
For example, consider the statement "mark x unless it is round unless it is blue". Does this mean that all
object will be marked except for the round blue ones? Or that all objects will be marked expect for the
round ones and the blue ones? Or will the round blue ones be marked but none of the other blue ones?
How many possible interpretations can you think of? How do these differ? It is plain to see that we need a
well-defined way to express decisions. Pseudo-code usually uses "if-then-else" statements for this. Such a
statement is written as:

if condition then statement A else statement B

It means that first the condition will be tested. If the condition is true, statement A will be executed, and if
it is false statement B will be executed. The else branch may be dropped completely if it is not required.
But we quickly encounter a difficulty if we try to use an "if-then-else" to rewrite the code above:

Algorithm next-node3
     n := any green node
     mark n red
     let m be a neighbour of n
     if m is not red then mark m green

How do we proceed from here? We need to repeat the same process for each and every neighbour of m.
This can be made precise using the concept of iteration.
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2.4.4
Repetition and Iteration
[draft for preview only; BM]
Pseudocode usually allows a range of different forms of iteration. The cleanest and simplest one is the
"while" statement. It takes the form

while condition do statement

and indicates than the statement must be repeated for as long as the condition remains true. First the
condition must be tested and if it is true the statement must be executed. After this, the test is repeated
and if it is true the statement is repeated. This continues until the test is false. Thus, the condition must
be something that changes through the execution of the statement… otherwise this will process will
never stop. Using a while statement we can revise the code further and write

Algorithm next-node4
   n := any green node
   mark n red
   while (n has a neighbour that is not red) do
      mark green a neighbour of n that is not red

The effect of this while statement is that the non-red neighbours of n will be marked green until all have
been marked. At this point the condition, which is evaluated each time before the statement is executed
again will be false and the repetition will be terminated.
The code above is correct, but the way we have used "a neighbour that is not red" twice clearly lacks
elegance. We will shortly improve on this…

Other forms of repetition and iteration
It would really be completely sufficient to have a while loop. With this we can express everything we
need. However, simply for convenience we often use other types of iteration as well. A useful variant of
the while loop is a repeat-until loop. The only difference between this and the while loop is that the
termination condition of a while loop is checked before the loop is entered and each time the body of the
loop is executed before this is done, whereas in a repeat-until loop this test happens at the end of the
loop (i.e. after the body is executed).

Look at the following two versions of a loop that counts

x := 1
while (x<10) do
   begin
     print x
     x := x+1
   end

and

x := 1
repeat
   begin
     print x
     x := x+1
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   end
until x=10

Will the two loops print the same numbers? 1

Armed with repeat loops you may now be tempted to rewrite the version of next-node 4 given previously
in this form. But this is not correct!

Algorithm next-node4
   n := any green node
   mark n red
   repeat
      mark green a neighbour of n that is not red
   until n has no more neighbours that are green or red

Why is this not correct? 2

A nice alternative shorthand form of loop is the "foreach" statement. This is particularly well-suited for the
situation at hand. This type of iteration takes the form

foreach x in choices do statement

where choices is the set of all items that have to be handled by statement. This will be executed by first
assigning the first item in choices to x and performing the statement with this value for x, then assigning
the next value in choices to x and performing the statement again. This process is repeated until all items
have been handled. We could write:

Algorithm next-node5
    n := any green node
    mark n red
    foreach (x in neighbours of n) do
        if x is not red then mark x green

This is starting to look better!
The final loop type that we need to consider is the "for" loop. Like the "foreach" loop, it is not really
required, because the while loop alone can already express all iterations, but it is sometimes convenient
nevertheless. For loops are generally used for iterations that need to be executed for an increasing or
decreasing regular sequence of numbers. The prototypical case are indexes. A for loop takes the form:

for x from a to b step n do statement

where x is a variable name and a, b, n are numbers (or variables that have numerical values). The loop
will bind x to the value a and then execute the statement. Subsequently, it will increment x by n and test
whether this value is less than or equal to b. If this is the case, the statement will be executed again with
the new value for x. The process repeats until x is greater than b. If n=1 we may drop the "step n" from
the statement. A simple example is:

for x from 1 to 10 step 2 do print x

which will print out the odd numbers from 1 to 9. After the loop has finished, x has the value 11.
Imagine we had indexes for the nodes in our graph. The statement:

for i from 1 to (number of nodes in the graph) do
   colour node with index i green

would colour all nodes in the graph green, whereas:

for i from 1 to (number of nodes in the graph) step 2 do
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   colour node with index i green

would colour only every other node.

1 No! The while loop will print 1…9 (because the loop won't be re-entered when x=10) while the repeat loop will print 1…10
(because the termination test for x=10 only takes place after the body has been executed).

2 Because the test is only executed at the end of the loop, there is no guarantee that n even has a neighbour when the loop
is entered.
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2.4.5
Blocks
[draft for preview only; BM]
Above we have glossed over an important question: How do we know which statements are dependent on
a condition (in the case of a decision) or which statements are repeated (in the case of an iteration)? Our
pseudocode needs to indicate this somehow. For this, we need the concept of a "block".
A block "groups" several statements so that they are treated as a single statement. The pseudocode
indicates a block by bracketing the statements in some way. Commonly a "begin" is used to indicate the
start of a block and an "end" to indicate where it finishes. Sometimes braces are used. Sometimes\ only
indentation is used, and all statements that are at the same level of indentation are considered as
belonging to the same block (this is also done in the programming language Python). We will use "begin"-
"end". This may be more verbose, but it is also very clear. Let's illustrate this with the simple example of
the for loop above:

for x from 1 to 10 step 2 do
    print x
print "more"

will print "1 3 5 9 more". The numbers 1…9 are printed by the loop, as discussed above. When the loop
finishes the next statement after the loop is executed, which prints "end". If we would bracket both print
statements with "begin" and "end" they would form a single block and thus be treated as a single
statement.

for x from 1 to 10 do
   begin
     print x
     print "more"
   end

Can you figure out what this would print? 1

So far our little algorithm "next node" has only considered the nodes around a given start node n. We do,
of course, want to traverse the whole graph! Recall that this simply means that, once we have marked all
neighbours, we need to restart with one of the nodes that are still green as a new start node. In other
words, we simply repeat the execution of our algorithm next-node 5 as soon as it has finished. For that,
we do of course use iteration. Since we want to repeat the whole sequence of instructions that makes up
algorithm next-node 5, we need to group these into a block by using begin and end. The only remaining
question is when to terminate the repetition. But this is easy: we simply terminate when there are no
more nodes to be processed, i.e. when no more green nodes are left.

Algorithm next-node-6-incomplete
    while (there are green nodes in the graph)
        begin
           n := any green node
           mark n red
           foreach (x in neighbours of n) do
               if x is not red then mark x green
       end

But there is a trap: In the beginning not a single node is green. So when the execution tries to enter the
loop for the first time the loop condition is false. In consequence, the loop will never be executed at all! To
fix this, we need to mark a "seed" node before the loop is entered so that the loop condition is true.

Algorithm next-node-6



2.4.5 Blocks

60

    marks an arbitrary node green
    while (there are green nodes in the graph)
        begin
           n := any green node
           mark n red
           foreach (x in neighbours of n) do
               if x is not red then mark x green
       end

1 This piece of code would repeat both print instructions 10 times. It would thus print "1 more 2 more 3 more" … and so forth
until "10 more".
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2.4.6
Nesting
[draft for preview only; BM]
Note that we have implicitly used a new concept in version 6 of our algorithm. This is called "nesting". We
have nested a loop inside another loop. We are allowed to do this because the whole loop is simply a type
of statement and statements are exactly what a loop executes repeatedly.
The situation in our algorithm is more complex than that: above we are not just repeating a loop but a
whole sequence of instructions including a loop. We can do this because we have wrapped the entire
sequence into a "block" using the "begin" and "end" brackets. This turns everything in the block into a
single (compound) statement so that the block can be put anywhere where a statement can be put.
There is another case where we have already applied nesting above: We have nested an if-statement
inside a foreach-loop. The same thinking applies: the whole if instruction is indeed a single statement and
thus the foreach loop can repeat it.
In the same way other types of statements can be nested. For example, we can nest an "if" statement
inside another if statement:

if (x>0) then
   if (x<5) then
     print x

Can you figure out what this fragment of code will do? 1

1 It will print the value of the variable x if and only if this value is between 0 and 5 (but excluding the values 0 and 5). The
nesting of the two if statements effectively causes a conjunction (AND) of the conditions to be applied for the print
statement. Thus, the code has the same effect as if (x>0 AND x<5) then print x
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2.4.7
Abstraction and Modularization
[draft for preview only; BM]
Meanwhile we are dealing with quite a few lines in our algorithm and even with several levels of nesting.
The concepts we have introduced so far are powerful - so powerful that we would not need anything else
to write our algorithms. However, this could quickly become unwieldy. We need a better way to structure
our algorithms.
Recall how above we have wrapped the code of one one algorithm (next-node5) into a loop to obtain the
algorithm next-node6. Why did we have to copy all this text? Instead we could write:

Algorithm next-node-6
    marks an arbitrary node green
    while (there are green nodes in the graph)
        next-node-5

thus calling upon another algorithm when we define a new one. This is called modularisation. The beauty
of modularisation is that it allows us to write things in a far more compact form. In particular if we need
the same functionality more than once in an algorithm. We can simply encapsulate this part of the
algorithm into a separate algorithm and use it twice.
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2.4.7.1
Parameters
[draft for preview only; BM]
Now let us consider a related but different kind of traversal - we want to execute two of the traversals we
have performed so far in parallel starting at two specified nodes A, B. Thus one wave of green nodes will
start to spread from A and one wave will start to spread from B. Since colour is the only property that we
are currently using to distinguish nodes, we will have to use two different colours for the two waves, let us
say green and yellow.
Our first attempt to write the algorithm might look like this

Algorithm next-node-6
    mark node A green
    mark node B yellow
    while (there are green or yellow nodes in the graph)
        begin
           if (there is a green node in the graph)
              begin
                 n := any green node
                 mark n red
                 foreach (x in neighbours of n) do
                     if x is not red then mark x green
             end
           if (there is a yellow node in the graph)
              begin
                 n := any yellow node
                 mark n red
                 foreach (x in neighbours of n) do
                     if x is not red then mark x yellow
             end
      end

Note that we have essentially just written down a loop that executes two copies of algorithm next-node-5.
However, we can not simply call next-node-5 twice because we need to execute it with different colours. If
we had a mechanism to pass the information to the algorithm which colour to use, we could simply
execute it twice but with different colours. This is what parameter passing is for. An algorithm can have
any number of parameters that are supplied to it as input when the algorithm is called. When we specify
the algorithm we write the parameters in brackets behind the algorithm name, and we use variable
names for these. The convention is that these variables will be bound to the parameter values that are
supplied when the algorithm is called by another algorithm. A version of next-node-5 with a colour
parameter would thus look like this:

Algorithm next-node5-p(c)
   if (there is a node with colour c in the graph) then
      begin
         n := any node with colour c
         mark n red
         foreach (x in neighbours of n) do
            if x is not red then mark x  with colour c
         end

"c" is the single parameter of this algorithm. The name that we give to the parameter has no function. It is
simply a variable name. At the time that we execute the algorithm c will be bound to whatever value we
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have supplied. We could also write a version with more than one parameter. Let us say, we also wanted to
specify the colour of the completed nodes. We would then write

Algorithm next-node5-p2(c1, c2)
   if (there is a node with colour c1 in the graph) then
      begin
         n := any node with colour c1
         mark n with colour c2
         foreach (x in neighbours of n) do
            if x is not of colour c2 then mark x with colour c1
         end

When we call an algorithm we supply the values for the parameters by listing them in brackets behind the
name of the called algorithm. The convention to identify which parameter is which is simply that the order
of the parameter values in the call must be the same as that of the parameters in the definition of the
called algorithm.
Now that we can tell the algorithm which colour to use we can write our double-traversal significantly
more elegantly.

Algorithm next-node-7
    mark node A green
    mark node B yellow
    while (there are green or yellow nodes in the graph)
     begin
         execute next-node5-p2(red, green)
         execute next-node5-p2(blue, yellow)
     end

This algorithm will spread two wavefronts through the graph. From A we spread a green wavefront that
leaves red nodes in its wake and from B we spread a yellow wavefront that leaves blue nodes in its wake.
We have written down our algorithm much more compactly and elegantly in this form and any change
that we make to the base algorithm next-node5-p2 will automatically be used consistently in both places.
But the true beauty of writing modular algorithms is that it allows us a top down development approach.
We don't need to think about how to do every little detail straight away. If we know that some
functionality can be achieved but we do not want to bother with the details, we can simply assume that
an algorithm (yet to be defined) exists for it and use this as a module in higher-level abstractions. This
allows us to postpone worrying about the details of how to exactly perform this function and to stay
mentally focussed on the level of abstraction that we are currently trying to tackle.
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2.4.7.2
Return Values
[draft for preview only; BM]
Let us illustrate this top-down development. First observe that if the two waves that our last algorithm
propagates through the graph ever meet we have identified that a path from A to B exists. Let us extend
our algorithm to verify whether there is such a path in the graph. Surely we can check whether the two
waves have met, but we don't want to worry about the details at this point. We want to modify the
algorithm along the following lines:

Algorithm next-node-8-incomplete
    mark node A green
    mark node B yellow
    while (there are green or yellow nodes in the graph)
        begin
            execute next-node5-p2(red, green)
            execute next-node5-p2(blue, yellow)
            if "the two waves have met" then
               print "A path has been found"
        end
    print "no path has been found"

Clearly, we need to specify how to check whether "the two waves have met" with a new algorithm. There
is only one problem: So far we have no way for the new algorithm to signal the outcome of the test to the
if statement. To do this we need to use one further concept: return values. We allow our algorithms to use
a "return" statement that defines the result of the algorithm. This result essentially replaces the call of the
algorithm in the code. You can think of it like a read-only variable. Using this we can write

Algorithm next-node-8
    mark node A green
    mark node B yellow
    while (there are green or yellow nodes in the graph)
        begin
            execute next-node5-p2(red, green)
            collision := test-collision(green, yellow)
            if collision(green, yellow) then print "A path has been found"
            collision := test-collision(green, yellow)
            if collision then print "A path has been found"
        end
    print "no path has been found"

The effect of this is that the assignment will call the algorithm test-collision (which we yet have to define)
with the parameters green and yellow.
What does the algorithm test-collision need to do? A simple way to perform the test would be:

Algorithm test-collision(c1, c2)
    if (there is a pair of green and yellow nodes
        that are adjacent) then
       return true
       else return false

Let us write this in a little more detail to make explicitly how finding the pair would have to happen.
Essentially we need to check all possible pairs of nodes and this can be done by using two nested loops
each of which iterates over all possible nodes:
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Algorithm test-collision(c1, c2)
    foreach n1 in all-the-nodes
       foreach n2 in all-the-nodes
          if (n1 is of colour c1)
             and (n2 is of colour c2)
             and (there is an edge from c1 to c2) then
              return true
    return false

There a a number of subtleties here how both the algorithm as well as the way of writing it down could be
improved, but it would be to early to discuss them here. You may however want to think about the
following: You could save your algorithm a lot of work by integrating the collision test directly in next-
node-5-p2.
How would you do this and how would it save work? 1

1 If you integrated the propagation to the next node and the test tightly instead of modularising them in the form shown
above, the test could profit from knowing what the last node expanded was. It would not have to search for a pair of
adjacent yellow and green nodes but instead would only need to test whether the just expanded node touches the
wavefront of the opposite colour. This test could be done in fewer steps (because not all pairs of nodes would have to be
checked). Striking the right balance between clean modularisation and efficiency is not always easy, but we will postpone
this discussion until after we have developed to discuss efficiency in a meaningful way.
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2.4.8
Collections
[draft for preview only; BM]
Let us return to our basic traversal algorithm (next-node6). It works fine, but there is an important
difference from the two traversals that we discussed earlier. Recall that breadth-first traversal (BFS) had
an important property: it visits the nodes in increasing distance from the start node and in this way it
always finds a node on the shortest possible path (provided short is defined as the number of edges
traversed). The algorithm above does not do this: it visits the nodes in some random order. This is
because we have used the statement "n := any node with colour" to find the next point to expand from.
What we need is to maintain a specific order in which to process the nodes: we want to do this on a first-
in-first-out basis, i.e. if node a was marked green earlier than another node b then a should also be
expanded earlier than b.
A simple way to keep track of this is by memorising a sequence of nodes adding each node to the end of
this sequence as it is marked green and always taking the next node from the from of this sequence. This
sequence will then be served in a first-in-first-out manner.
The only trouble is that so far we have no way of memorising such sequence. This is what lists are for. A
list is an object that can hold any number of other objects in a defined order. Variables can be bound to
lists just like to any other value or object. We write lists by including the elements in square brackets and
separating them by commas. Thus

x = [4, 3, 2, 1]

binds x to the list that contains the values four to one in decreasing order. It is worth noting that a list can
be empty! This is written as

y = []

There are only a few fundamental operations necessary to work with lists: you need operations to

check whether a list contains any elements at all or is empty. We will do this by writing "is1.
empty(x)" which evaluates to the coresponding truth value.
get the first element of a list. We will do this by writing "first(x)". For example "a=first(x)". Note2.
that you cannot get the first element from an empty list.
remove the first element from a list. We will do this by writing "rest(x)". Note that this does not3.
actually mean that we are changing x. We are simply getting a list that contains all elements of x
bar the first. If we want to change x itself, we would have to write an explicit assignment "x :=
rest(x)"
add a new element to the list. Strictly speaking, you only need a single operation prepend(l, a)4.
which adds an element a at the front of the list l. However, for convenience sake we will also agree
on a second operation append(l, a) which adds an element a to the end of the list l.

For convenience you will, sometimes want to have different kinds of access to a list. For example, you
may want to look at the n-th element in sequence directly. Many programming languages will offer you
operations to do this and many other things with lists, but note that these are just convenience
operations. If you have the above four you can do everything already, but you may need a bit more
writing. To illustrate the point let us write an algorithm that returns the n-th element in a list. It will have
the list and the index position as parameters

Algorithm element(l, n)
   temp-list := l
   while (n>1) do
       temp-list := rest(temp-list)
   return first(temp-list)
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Other convenience operations could be described in similar ways and it is a good exercise to think of a
few convenience operations on lists and to specify them using only the four operations given above.
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2.4.9
Converting Pseudocode into Edgy
In this module, we're going to convert the pseudocode algorithms that we discussed in the previous
modules into code in Edgy. You will see how to snap together blocks in Edgy just like the sequences of
statements that make up an algorithm.

Statements in Sequence
Programs in Edgy consist of blocks, which are the statements or instructions for your program. The blocks
are grouped into categories listed in the top left section of the Edgy window (the palette). To select a
category, simply click on the category name and the blocks will be listed in the panel underneath. To
build a program, select a block and drag it into the centre of the Edgy window (the canvas). Blocks can be
"snapped" together in sequence to make a program. The shape of the blocks indicates how they fit
together, like the pieces in a jigsaw puzzle. When you drag blocks together in Edgy, a white line will
appear indicating how the blocks fit together.

Variables and Assignment
We're going to build the traversal algorithm that we discussed in modules 3.3.1 - 3.3.8 in Edgy. The file
below called"example_graph", contains an example network similar to the one that we used in module
3.2.

Please take a moment to load it into your own copy of Edgy so that you can follow along with this module
and build algorithms in Edgy. First, download the file to your computer, then open the Edgy window, right-
click on the stage and select "import from file" to load this file into Edgy.

example graph (https://www.alexandriarepository.org/wp-content/uploads/20150331094302/3.3.9.txt)

Now, let's create a variable in Edgy. Try this in your own copy of Edgy as we go along. Click on "Make a
Variable" under the variables tab, then give your variable a name, "n".

https://www.alexandriarepository.org/wp-content/uploads/20150331094302/3.3.9.txt
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This will create a variable block named "n", that will be listed in under the variables tab. You can use the
checkbox next to the variable block to show or hide the variable on the stage in Edgy.

Now, let's set the value of our variable "n". You can set or update the value of a variable in Edgy, using a
"set … to …" block. Select the name of the variable you want to set from the pre-populated drop-down list
of variables and type in a value for that variable:- let's give our variable "n" the value "A".

To use the variable, drag the orange block under the variables tab, named "n", inside other blocks. You
can use a variable block anywhere where you can type in a value.

Now drag and snap your blocks together to make the following block of code, and click on this block to
run it on the example graph and see the node named "A" turn green.

Decisions
In Edgy, we can use the "if… else…" block to make decisions in our code.

If the"else" branch is not required, an "if …" block can be used. Once again, let's try this out on our
example graph in Edgy. Build the block below and then try it out before and after changing the colour of
the node X to red to see it execute. (You can change the colour of a node manually, by right-clicking on it
on the stage and selecting "set color").
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Repetition and Iteration
We can create a "while.. do… " statement using the "repeat until …" block in Edgy. Whereas the "while
condition do action" statement repeatedly performs an action until some condition no longer holds, the
"repeat (action) until condition" statement performs an action until some condition is met. Thus, the
condition of a while…do…" statement is negation of the condition of an equivalent "repeat until…."
statement.

So, the following pseudocode using a "while … do …" loop to add 6 nodes to an empty graph….

while (number of nodes is not equal to 6) do
   add node (new node)

… can be written equivalently in Edgy using a "repeat until …" loop as follows:-

Edgy also has a "foreach item of … " block, which iterates over a list of possible values and executes the
blocks inside once for each item in the list. Please try this out on our example graph, using the following
block to colour all the neighbours of one node. You can rename your loop variable (named "item" by
default), by clicking on it and entering the new name in the "Script variable name" dialog box.

When you ran the blocks above on your example graph, it changed the colour of some of the nodes in the
graph. To change the colour of the nodes back to white in your example graph, you can use another "for
each item in …" loop to do this, like the one below.

There is also a "for i = 1 to 10" block in Edgy, which can be used for iterating over an sequence of
numbers. The numbers change by 1 each iteration, and can be set to wither increment or decrement (by
setting the start number as either higher or lower than the end number). For example:-

If you wanted to alter the amount to increment the number between each iteration (the "step"). You could
write this this in Edgy as follows:-
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Blocks
Whereas in pseudocode we need to use use "begin" - "end" (or another strategy such as indentation or
braces) to indicate which statements should be grouped together to form a block, in Edgy this is indicated
by the shape of the blocks. As you have seen, conditional or iterative blocks in Edgy are shaped like a "C"
and wrap around the block or blocks that are dependent on them.

So, where the following program in Edgy, with the "say end for 1 secs" block outside the loop, prints (or
"says") the numbers 1 through 10 and then "end"…

… the program below, with the "say" blocks inside the loop, prints "1", "more, "2", "more", "3", "more"…..
"10", "more".

Nesting
You can also nest C-shaped blocks inside one another in Edgy just as you would other blocks. So you can
nest loops inside loops:-

If the name of your nested loop variables are duplicated, you should re-name one or both of them to avoid
confusion.

Or you can nest an "if…" block inside another "if…" block:-
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Or, an "if.." block inside a loop:-

Build the block above in your own Edgy environment and try it out on the example graph above. All of the
nodes in the graph will turn green.

Abstraction and Modularisation
Now, we've seen enough blocks in Edgy, to start to build the "next-node" algorithm, which we created in
pseudocode in modules 3.3.1 - 3.3.5. Before you read further, please have a go at converting the
pseudocode for next-node-6 (below) into blocks in Edgy.

Algorithm next-node-6
    marks an arbitrary node green
    while (there are green nodes in the graph)
        begin
           n := any green node
           mark n red
           foreach (x in neighbours of n) do
               if x is not red then mark x green
       end

Here's the "next-node'6" algorithm converted into Edgy:-

However, you may have noticed the grey block called "any_green_node": where did this block come from?
Well, our pseudocode includes statements to check whether "there are green nodes in the graph" and to
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find "any green node". And, checking whether there are green nodes in the graph is the same as checking
whether we can find "any green node". So, to build or "next-node-6" algorithm, we need a block to find a
green node in our graph, if one exists. As no such block exists in Edgy, we're going to build our own block
or "module" to find a green node if there is one. Let's see how we can do this:

Making a Block in Edgy
To create a module (or block) in Edgy, click on the button labelled "Make a block" at the bottom of the
Variables palette.

This will bring up a dialog like the one below for you to select the the type of block that your want to
create and which palette you would like it to be listed under in the Edgy environment. We'll type in a
name for our block, "any_green_node"…

… and then choose a block type. There are 3 block types:

Command blocks: A command block is a block that performs an action or actions. They are shaped
like bricks or jigsaw puzzle pieces that can be slotted together.

Reporter blocks: A reporter block will report a value that can be used as an input to another block.
They are an oval shape.

If you drag a reporter block onto the canvas by itself and click on it, the value that it reports will
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appear in a speech bubble next to it.

Predicate blocks: A predicate is a special kind of reporter that always reports either true or false.
Predicate blocks are a hexagonal shape:

They fit inside special hexagonal input slots like this one:

We're going to make the "any_green_node" block a reporter, because it needs to report the name of a
green node if there is one in the graph. Once you have selected a category and type for your block, type
in a name for it and hit "Enter". This will bring up the "Block Editor" window with a template for your new
block or "module" where you can drag and snap blocks together to define your block or module.

Here's the "any_green_node" block below. It loops through all the nodes in the graph, checking whether
they are green. As soon as it finds a green node, it will report the name of this node. If it has looped
through all the nodes and not found a green node, it will report back without a node name.

Once you are happy with your block in the Block Editor, click on "OK" to create it. Your block will then
appear at the bottom of the palette that you selected. Grey blocks, categorised as "Other", will appear at
the bottom of the "Variables" tab. You can modify your block by right-clicking on it and selecting "edit…".

Once you've created your block, you can use it just like you would use any other block in Edgy.
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In module 3.3.7 we discussed how to modularise our algorithm "next-node-6" by using the algorithm
"next-node-5" from module 3.3.4. We can do this in Edgy by making another block for "next-node-5", and
using this block in our next-node-6 algorithm.

Let's make a new command block in Edgy for "next-node-5":-

And now we can use this block in "next-node-6" to create a modularised version of the same algorithm.

Parameters
In Edgy, we can also add input parameters to blocks that we have made. As in module 3.3.7.1, we're
going to modify the "next-node-6" algorithm to execute two traversals, one starting from node A and one
from node B. A wave of green nodes will spread from node A, and a wave of yellow from node B. Here's
the pseudocode that we created in module 3.3.7.1 as a reminder of our algorithm.

Algorithm next-node-7
    mark node A green
    mark node B yellow
    while (there are green or yellow nodes in the graph)
     begin
         execute next-node5-p2(red, green)
         execute next-node5-p2(blue, yellow)
     end

When we start converting this into code in Edgy, we'll need to add some parameters to the blocks (or
modules) that we previously created in Edgy: "any_green_node" and "next_node_5". The parameters will



2.4.9 Converting Pseudocode into Edgy

77

allow us to specify which different node colours for the two wavefronts.

First, let's edit the "any_green_node" block, to test for the presence of a node colored with a color that we
specify. Right click on the "any_green_node" block and select "edit…" to add a parameter for color to this
block. Then, in the Block Editor, click on the plus sign (+) next to the name of the block, which will bring
up a "Create Input name" dialog. Using this dialog, you can edit the name of your block (by selecting
"Title text"), or add input parameters to your block (by selecting "Input name"). We're going to add an
input parameter for color as follows.

And here's our modified "any_green_node" block.

Now, we'll need to replace the text string "green" with the "color" variable that we created as an input
parameter. To do this simply drag and drop the color parameter into the spaces where the text "green"
was.
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You'll notice that the name of the block no longer makes sense now that it takes a colour as input, so
we're going to change the name of the block as well. To do this, click on the name of the block in the
"Block editor" dialog, and this will bring up a dialog called "Edit label fragment". Select "Title text", then
enter a new name for the block ("any_node_colored"), and click "OK".

Now we have an "any_node_coloured" block that checks whether there are any nodes of a specified color
in the graph. We can use this is in our "next-node-7" algorithm.

However, we'll also need to add some parameters to our "next-node-5" block, which will use two colors to
color the nodes it has visited and next nodes to visit.

Once again, right click on the "next-node-5" block and select "edit…". Then click on the plus sign to add
the necessary parameters to the block (one at a time), we'll call them color1 and color2. Then replace the
text "red" and "green" with color1 and color2 respectively. (Note: I have changed the if condition to check
if the node is white, in order not to colour over yellow / blue nodes from the other wavefront).
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And now we can build the "next-node-7" algorithm as Edgy using the parameterised blocks that we've
created. The calls to "next-node-5" are inside individual "if…" conditions, to check whether only green or
only yellow nodes exist in the graph (not both).

Return values
When we created our "any_green_node" block, we made it report (or return) the value of a green node.
Reporter and predicate blocks in Edgy return a value to the calling block.

Now, if you run the the "next-node-7" algorithm above, you will notice that it colors the nodes from the 2
wavefronts. If we want to verify whether the two wavefronts have met, we need to add a test for
collisions, as we discussed in the "next-node-8" algorithm in module 3.3.7.2. Here's the pseudocode for
"next-node-8". Before you read on, have a go at converting this into Edgy yourself.

Algorithm next-node-8
    mark node A green
    mark node B yellow
    while (there are green or yellow nodes in the graph)
        begin
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            execute next-node5-p2(red, green)
            collision := test-collision(green, yellow)
            if collision(green, yellow) then print "A path has been found"
            collision := test-collision(green, yellow)
            if collision then print "A path has been found"
        end
    print "no path has been found"

And here's the corresponding Edgy code:-

We'll also need to create a predicate block for "test-collison", as follows, which returns either true of false,
depending on whether the two wavefronts have met.

Algorithm test-collision(c1, c2)
    foreach n1 in all-the-nodes
       foreach n2 in all-the-nodes
          if (n1 is of colour c1)
             and (n2 is of colour c2)
             and (there is an edge from c1 to c2) then
              return true
    return false
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Collections
To create a list in Edgy, use the "list …" block. A lists with no input spaces is an empty list. You can use
the black arrows to increase or decrease the number of elements in the list.

 or 

You can bind a variable to a list in Edgy just as you you any other value:-

List blocks and blocks to perform various list operations are found under the "Variables" tab in Edgy. The
fundamental list operations can be performed as follows:-

Checking if a list is empty  or1.

Getting the first element from a list:- 2.
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Getting the rest (all but the first element) of the list:- 3.
Adding an element to the end of a list, use the "add thing to …" block:-4.

And the resulting list:-

As discussed in module 3.3.8, we're going to modify our traversal algorithm (next-node-6) to ensure that
it visits the nodes in order of increasing distance from the start node. To do this, we're going to store the
nodes that we have marked green in a list. The nodes towards the front of the list, will have been marked
green before those at the end of the list. Here is the algorithm in Edgy:-

Notice that we are using a list "green_nodes" to keep track of which nodes are coloured green. Nodes are
appended to this list as they are coloured green, and removed from the front of the list as they are
coloured red. And the green nodes are visited in list order: in each iteration, we take the first green node
from the list as our next node.
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2.5
Edgy: Revisiting the Muddy City
Recall Prim's algorithm from our earlier discussion of the Muddy City Problem.

Remember that we refined this so that we chose the closest node each time through the loop. We also
need to add a branch for the case when there are no remaining nodes (the "no" case missing from the
conditional in the flowchart).

Let's begin by writing down a sequence of steps in plain English.

initialize a tree with a single node, chosen arbitrarily
while there is still a node not incorporated into the tree
    find the closest node not already in the tree
    add an edge to link this node to the tree

Now let's flesh it out more, and write proper pseudocode. We will assume that the cost of an edge is
stored as the label of the edge. We will add two attributes to each node, one to hold the cost of adding
that node to the graph, and one to keep track of which node in the current MST is closest. We will mark
MST nodes and edges in green as we go.

The following is an adaption of the pseudocode for Prim's algorithm from Wikipedia
(https://en.wikipedia.org/wiki/Prim%27s_algorithm). For ease of comparison we use the same variable names. We will
use the notation label(a, b) to refer to the label of the edge (a, b).

https://en.wikipedia.org/wiki/Prim%27s_algorithm
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Q := new priority queue
E := new dictionary
C := new dictionary
foreach node n:
    E[n] := null
    C[n] := infinity
foreach node n:
    enqueue n in Q with priority C[n]
repeat until Q is empty:
    v := head of Q
    dequeue from Q
    set colour of v to green
    if E[v] ≠ null:
        set colour of edge (v, E[v]) to green
    foreach neighbour w of v:
        if Q contains w and label(v, w) < C[w]:
            update w in Q to have priority (label(v, w))
            C[w] := label(v, w)
            E[w] := v

NB we represent E and C using node attributes. This is just a matter of convenience, and we could have
used dictionaries.

Prim's Algorithm in Edgy
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2.6
Breadth First Search and Depth First Search
(2016)
[draft for preview only; BM]
We can now return to the search algorithm that we had discussed earlier and phrase it in a precise way.
We will make it precise in two ways: firstly, by using the algorithmic pseudo-code notation that we settled
on earlier, second by using lists instead of marking the nodes with colours. This brings the algorithm very
close to an actual implementation as a program, as you will soon discover.

As a first step, let us rewrite the algorithm - still using colour marking - in proper pseudocode. This is
really just a minor rewrite.

Algorithm search(A, B)
/* input: two nodes A, B
/* output: true if there is a path from A to B, false otherwise

mark A green
found := false
while (there is a green node)
   begin
      C := an arbitrarily chosen green node
      if (C=B) then found := true
      else
          foreach n in neighbours(C) do
             if (n is not marked red) then mark n green
      remove the green mark from C
      mark C red
   end
return found

Note that this algorithm will continue to traverse the graph even after it has arrived at node B. For what
we are trying to achieve this is a complete waste. We can stop the algorithm from doing so by
incorporating explicitly in the condition of the while loop that it should only continue if B has not yet been
found:

Algorithm search(A, B)
/* input: two nodes A, B
/* output: true if there is a path from A to B, false otherwise

mark A green
found := false
while (there is a green node) and not found
   begin
      C := an arbitrarily chosen green node
      if (C=B) then found := true
      else
          foreach n in neighbours(C) do
             if (n is not marked red) then mark n green
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      remove the green mark from C
      mark C red
   end
return found

Lists give us an easy and efficient way to keep the nodes that we still need to expand directly accessible
(the green nodes). Using lists, we can immediately access the next green node without any search. (We
assume you are familiar with the basic concept of a list, if not, please study the corresponding module
before you proceed).

We will use one list to keep track of all the green nodes and one list to keep track of the red nodes that
we have visited already. The "green" list will initially only contain the start node. In every repetition of the
loop we take one node off the list (the one being marked red) and add its neighbours to the list (the new
green ones). Thus, this corresponds exactly to what we have done with the colours before.

We will use the list and the graph ADTs that we have defined earlier. One consequence of this is that we
will need the whole graph as input to the algorithm, because the neighbours operation needs it as an
argument. Of course, this makes perfect sense. Without knowing the graph we cannot determine the
neighbours of any node! We have just been sloppy about this so far and assumed implicitly that there is a
specific graph in the context of which we evaluate our operations.

Algorithm BFS(G, A, B)
/* input: a graph G and two nodes A, B of G
/* output: true if there is a path from A to B in G, false otherwise

Green := new_list()
Green := append(A, Green)

Red := new_List()
found := false

while not(is_empty(Green) or found)
   begin
      C := first(Green)
      if (C=B) then found := true
      else
          foreach n in neighbours(G, C) do
             if not(is_member(n, Red)) then Green := append(n, Green)
      Green := rest(Green) /* remove the green mark from C
      Red := append(C, Red)  /* mark C red
   end
return found

Now that there is no arbitrary choice of next node in the algorithm anymore the visit order is clearly
defined . We are using a list, take the nodes to be processed from the front, and insert new nodes to be
processed at the end.

The resulting algorithm is called Breadth First Search or BFS for short. The name of the
algorithm is explained by the order in which the nodes are visited.

What can you observe about the order in which BFS visits the nodes? What does this mean for the path to
the target node B? 1
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The following video gives an example of the visit order that you can use to check your
understanding.

(https://www.alexandriarepository.org/wp-content/uploads/FIT1042-BFS-visit-order-Wi-Fi-High.mp4)

Is the visit order uniquely defined? Can you say exactly in which order the nodes will be visited? 2

The way in which we have used the list is a very special (and important) type of lists, which is called a
Queue. It behaves exactly as a (well-behaved) waiting queue should: newcomers queue up at the end,
and the people at the front of the queue are served first. An alternative name for a queue is thus also
FIFO, which stands for first-in-first-out.

Now consider one tiny change to the algorithm: We add new elements at the front of the list rather than
at the end. Before we proceed we need to define one more detail. In BFS we avoided adding nodes to the
list twice by checking whether we had visited them already. Let's make a different choice this time: we
always add the nodes to the front of the list (even if they are already in the list) risking duplicates. Instead
we avoid revisiting nodes by checking them as we pull them off the list.

Algorithm DFS(G, A, B)
/* input: a graph G and two nodes A, B of G
/* output: true if there is a path from A to B in G, false otherwise

Green := new_list()
Green := append(A, L)

Red := new_List()
found := false

while not(is_empty(Green) or found)
   begin
      repeat

https://www.alexandriarepository.org/wp-content/uploads/FIT1042-BFS-visit-order-Wi-Fi-High.mp4
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         C := first(Green)
         Green := rest(Green)
      until not(is_member(C, Red)) or is_empty(Green)
      if not(is_member(C, Red)) /* did we actually find a next node to work
with?
         begin
            if (C=B) then found := true
            else
                foreach n in neighbours(G, C) do
                   if not(is_member(n, Red)) then Green := cons(n, Green)
            Red := append(C, Red)  /* mark C red
         end
   end
return found

(https://www.alexandriarepository.org/wp-content/uploads/FIT1042-DFS-visit-order-Wi-Fi-High1.mp4)

Assume we would not have crossed out the edge between the nodes numbered 2 and 8. Would the
algorithm ever expand the node numbered 7 in this case? 3

The way in which we have used the list this time is another special type of lists, which is called a Stack. It
behaves like a stack of dishes that is waiting to be washed: new dishes are stacked on top (at the front),
and dishes are taken from the top (front) to be washed. If dirty dishes come flooding in faster than they
are cleaned, the first one will never be cleaned (a common share-house phenomenon)!

An alternative name for a stack is LIFO, which stands for last-in-first-out.

The name of this algorithm is Depth First Search, or DFS for short. It is another example of
a traversal method. The name derives from the fact that it first follows a path in full depth
(until the path ends or until the target node B is found). If the path ends, the algorithm backs
up to the previous node in the path and expands another neighbour instead. This is exactly
the method you should use to find your path out of a maze (but only if your memory is good

https://www.alexandriarepository.org/wp-content/uploads/FIT1042-DFS-visit-order-Wi-Fi-High1.mp4
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enough to keep track of all the places you have visited already). You trail a thread behind
yourself and every time you get stuck you back up to the last point where you had a choice to
explore where another neighbour takes you to. You do this until you find the exit or run out of
options.

Use the picture of the maze below to find your way from the entry to the exit using DFS. Recall that a
maze can be represented as a graph by turning each branching point as well as entry and exit into nodes,
and creating edges for each two such points that are directly connected by a corridor. Note that you could
not effectively use BFS if you were physically caught in a maze. This would require you to keep the list of
unexpanded "green" nodes explicitly and to jump between them as you are finding your path. This
jumping would really make your problem worse instead of helping to solve it.

You probably found it hard to keep track of what you had already explored at a previous node.
This is exactly because it is difficult to keep a stack in your head! But it is very easy for a
computer.

There is a much better way to phrase DFS than the above. We can formulate DFS very
concisely using a programming concept called recursion. We will revisit DFS therefore after
we have studied recursion in a later module. This will also help us to define powerful
extensions of DFS. (For those of you already familiar with recursive programming: the magic
of the recursive DFS is that we don't need to keep the stack explicitly, because the call stack
handling the recursive calls takes care of all of this automatically in the background!)

The final problem that we need to solve to make our search for the path form A to B useful is to actually
return the actual path, i.e. the sequence of nodes we have to take to get from A to B.

How would you extend BFS to explicitly yield the path from A to B? 4

1 The nodes are visited in increasing order of topological distance from the start node. You can imagine the graph as being
divided into levels (or layers): Layer 0 contains the start node; Layer 1 all nodes that can be directly reached from the
start node; Layer 2 all the nodes which are at distance two from the start node (i.e. for which you must pass through at
least one other node to reach them), and so on. With this layering, breadth first search will first visit all nodes in Layer 1,
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then all nodes in Layer 2, and so on.
2 No! The nodes will always be visited in increasing topological distance from the start node A, but for nodes at the same

distance it is not specified which one will be visited first. This is because the order of neighbours(G, C) is not specified.
3 This question cannot be answered without further information. It depends on the order in which the algorithm handles the

neighbours of node 2 when it expands this. In the case that it prepends node 4 to L first, and only then node 3, node 3
(the target B) will be pulled off the list in the next step and the algorithm will stop. However, if node 3 is prepended first
and only then node 4 is prepended, the algorithm will continue the path with node 3 and will eventually expand node 7.
Thus, we have found one spot where the algorithm is not (yet) fully and precisely specified.

4 This is relatively easy to do, as BFS always visits a node using the shortest path to it. You simply create a new attribute for
each node. Call this "parent". As you expand a node A, you set the attribute "parent" of all of its neighbours to A. You will
never have to change this, as the node won't ever be reconsidered. Then, when you have found the node B, you can read
off the "parent" of B. Call this C. You then read of the parent of C and so on until you have reached A. This gives you the
path from A to B in reverse order. Try it out manually on a piece of paper! For the so-called "iterative" version of DFS that
we have written, it is not quite as easy to see how we would keep the path. However, this will be exceedingly clear to see
in the more elegant recursive version that we will look at later when we introduce recursion. Stay tuned!
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2.6.1
Browsing a social network using BFS
[draft for preview only; BM]
We can now use our knowledge of BFS to implement a mini "friends-browser" for the last.fm social
network (http://www.last.fm/).

The following screencast walks you through the complete implementation of BFS and this browser in Edgy
(30 min).

(https://www.alexandriarepository.org/wp-content/uploads/Last-FM-BFS-Browser-mp4.mp4)

http://www.last.fm/
http://www.last.fm/
https://www.alexandriarepository.org/wp-content/uploads/Last-FM-BFS-Browser-mp4.mp4
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2.7.1
Why ADTs Matter

Cakes and Parties
By now you are familiar with the idea of an algorithm as a kind of recipe, a sequence of steps for
completing a task. We can think of the instructions for baking a cake as pseudocode that can be
interpreted by a human with the support of appropriate hardware (the kitchen).

Popping up a level, we can think of higher level tasks in the same way. Suppose you were organising a
birthday party for a friend. This could involve steps like:

pick a venue and date1.
make a list of invitees and invite then2.
bake a cake3.
put up some decorations4.
host the party5.
clean up the mess6.

Notice that "bake a cake" is a single step here. However, we can expand "bake a cake" into a more
detailed series of steps. The same is true for the other steps above. Imagine a more comprehensive
algorithm for a party, in which each of the above steps is broken down into several steps. This would
include steps like "identify possible dates for a party", or "invite Kim", or "buy cocoa". In such a way it
would be easy to come up a list of 30-40 low-level steps. However, this becomes impossible to manage.
Try writing these low-level steps and see just how unwieldy it is.

Modularity and Top-Down Design
Consider again the short list of tasks for organising a birthday party. Notice how modular it is. We didn't
give the low level details. At this high level of abstraction, we simply presumed that we would know how
to carry out the steps when the time came. For instance, at the point of writing down the algorithm, we
anticipated the need to clean up, but perhaps we didn't bother thinking it through in detail. Thus, we set
about organising the party in a top-down fashion.

The same idea is widespread in programming. For example, if you were writing a program to process
meteorological data to find Australia's windiest city, you might write something like the following:

wind_data = load_data("wind.csv")
city = analyse(wind_data)
print_result(city)

Then you could zero in on the individual steps. If you were working in a team of three, you might assign
each person a different step. Everyone would go away and implement his or her module, and then come
back to put them together. You would just need to agree on the interface between the parts (i.e. what
kind of structure is wind_data or city).

This modularity also helps later on when it comes to testing. If we are searching for a bug, we can more
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quickly narrow our search to a particular module. This can lead to huge time savings.

Going further with modularity
Let's think about graphs again. Remember that a graph consists of a set of nodes and a set of edges.
There are various basic operations that we can perform on a graph, such as adding an edge. Each
operation is a separate little algorithm. When we want to perform higher-level tasks such as finding the
shortest path between a pair of nodes, we can write an larger algorithm that is built from these basic
operations. It's the same situation that we had above with the algorithm for a party that required an
algorithm for baking a cake.

This idea is so important that we will spend the next several modules exploring it.

In the case of graphs, we will encapsulate graph data (nodes and edges) and graph operations
(connectivity, add_edge, etc) into a single entity, namely the Graph Abstract Data Type, or more simply,
the Graph ADT. The same will go for other kinds of data and operations, e.g. stacks, with push and pop.

What do we mean by abstract?
Why are we calling these abstract data types? Simply because we are providing a definition without an
implementation. We are specifying enough about the type that we can be sure any implementation is
correct.
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2.7.2
The Graph ADT
In general, we are going to formalise data types in three steps: (a) specifying a set of objects; (b)
specifying the syntax of the operations that can be applied to this set; (c) specifying the meaning (or
semantics) of the operations in terms of the items in this set.

So, how do we specify a graph? At one level, we do it using a node set and an edge set, e.g. ({1, 2, 3},
{(1,2), (2,3)}). But this just specifies an instance of a graph. How do we specify the abstract data type of
graph?

For starters, we need to specify the possible objects under consideration. A graph is a collection of nodes
and edges. In other words, it is a pair (N, E) where N is a set, and where E is a set of ordered pairs of
items from N. (We're going to assume that we have a directed graph for now.) According to this definition,
here are some instances of graphs:

({}, {})1.
({1}, {})2.
({1, 2}, {(1,2)}3.
({1, 2, 3}, {(1,2), (2,3)})4.
({1, 2, 3}, {(1,2), (2,3), (3,1)})5.

There's obviously a large space of possible graphs!

Defining some graph operations

Notice the similarity between the above graphs. We get from the first to the second by adding
node 1; we get from the fourth to the fifth by adding edge (3,1). So our Graph ADT needs to
provide the operations of add_node and add_edge, i.e.

add_node: Graph × node → Graph
add_edge: Graph × edge → Graph

What is the meaning of the Cartesian product notation A × B? 1

These operations of add_node and add_edge enable us to build up all the graphs listed above. However,
they do not provide us a way to get started! How do we create a graph in the first place? We need a
special operation just for that. It doesn't take any arguments at all, but it gives us a graph:

new_graph: → Graph

Now we can provide the operations that would have produced the earlier sequence of graphs. Note that,
in order to perform an operation that involves no arguments, we still provide parentheses, i.e.
new_graph(). Also, in order to apply an operation to an object, we use a dot, as you can see in line 2.

G = new_graph()1.
G.add_node(1)2.

Can you provide the rest?
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Finally, we should give ourselves a way to access the contents of the graph we have been creating:

all_the_nodes: Graph → set(node)
all_the_edges: Graph → set(edge)

These operations are useful if we want to process all nodes or all edges in some way. Thus, if we perform
the operations to create the above series of graphs, then do all_the_nodes(G), we would get the set {1, 2,
3}.

Each of these lines is called a signature specification. A signature consists of the name of an operation,
the type(s) of its input(s) and the type of its output.

Although the details are beyond the scope of the course, we can already provide some axioms to ensure
that graphs behave as expected. For example, if we add a node to a graph, it had better be present in the
resulting graph. We can formalise this as follows: n ∈ all_the_nodes(add_node(G, n)). This is an example
of an axiom that any implementation of the Graph ADT must satisfy.

Navigating a Graph
When we move around a graph, we assume we are located at a particular node n. So the starting node
must be specified for any operation that involves navigation. We want to know which nodes can be
reached from n by following an edge that starts at n. How many such edges might there be? Any number,
zero, one, or more. Thus, the result of our operation must be a set. We can now write it down:

neighbours: Graph × node → set(node)

The semantics for the neighbours operation needs to take care of the fact that edges are undirected by
default. In other words, n is a neighbour of m in some graph G if and only if (m,n) or (n,m) is in the edge
set of G. It is possible to go further and write down the semantics using algebraic notation as follows:

n ∈ neighbours(G, m) iff (m,n) ∈ all_the_edges(G) or (n,m) ∈ all_the_edges(G)

However, this is not necessary. Carefully worded statements in English are sufficient for specifying
semantics.

Some Housekeeping

It is usually a good idea to include several more operations. For example, we just added the
outgoing_nodes operation. So there should be a corresponding incoming_nodes operation in
order to navigate in the reverse direction. We also included add_node and add_edge, and so
there should be corresponding remove_node and remove_edge operations.

For convenience, it is good to define an operation that reports the order of a graph, and one
that tells us whether a graph is empty. Note that these are redundant, since they can be
specified using operations that have already been provided. (There is no requirement that the
operations are minimal.)

Finally, it's a good idea to add operations that report whether a graph is connected, or
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whether it contains a cycle.

To consolidate your knowledge, we encourage you to write down signature specifications for:

incoming_nodes, outgoing_nodes
remove_node, remove_edge
is_empty, is_connected, is_cyclic
order

Now we have defined a variety of operations. The definitions tell us what type of input and output to
expect for each operation. However, we have held back from mathematically defining the meaning of
these operations using statements like: n ∈ G.add_node(n).all_the_nodes(). Such statements are required
for a complete formal definition of an abstract data type, and they go beyond the scope of this course.

Back to the Basics
This is about as difficult as it gets. In the following modules we will go back to looking at some simpler
data types, such as lists. If you found the above material a little challenging, we encourage you to press
on regardless, then revisit the Graph ADT once you've seen a few other ADTs.

1 The Cartesian product A × B is the set of all ordered pairs (a, b) where a ∈ A and b ∈ B. So the add_node operation takes
any combination of Graph and node.
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2.7.3
Collection ADTs: Lists and Arrays

Introduction
You may have noticed that computers seem to be at their best when doing the same thing over and over
again, ad infinitum. Of course, we know this as iteration, the act of performing the same operation(s)
repeatedly. (And of course, if a computer could speak, it would point out that programmers are at their
best when writing simple loops. For anything more complicated, programmers struggle write what they
mean!)

Consider the following pseudocode, which generates the first 100 Fibonacci Numbers:

fib = [0, 1]
for i = 3..100:
    next = fib[i-2] + fib[i-1]
    fib = append(fib, next)

The result is a sequence of integers, 0, 1, 1, 2, 3, 5, …, which we have represented as a list. A list is a
sequence which may include repeats.

Now consider a hand of 10 cards:

In order to play a card game, we might begin by sorting the cards in your hand, first into suits, then by
value, resulting in a list like: ['KH', '6H', 'KD', 'QD', '7D', 'AC', '10C', '2C', 'JS', '6S'].

As our final example, you may have a set of tasks to work through. You make a list, then put stars beside
the items according to importance:

**fix bike
*call Lee
***feed cat
***write essay
*read chapter
**visit gym

Rather than getting started on the tasks, you think about how you would go about writing an app to help
you manage tasks. With income from such an app, you could probably just pay someone to do the tasks.
Anyway, you see that there's a collection of items, each with a numerical priority in the range 1-3, and
express the information as a list of pairs: [('fix bike', 2), ('call Lee', 1), ('feed cat', 3), …]

At this point, we've seen collections of integers representing a numerical sequence, collections of strings
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representing playing cards, and collections of pairs of strings and integers, representing tasks with
priorities. In all cases, we have collections, in which each element is of the same type.

Operations on collections
Several data types exist purely for helping us to manage collections that consist of items having the same
type. Those items could be simple things like integers, strings, or pairs, but in principle they could be
anything. They could represent people, companies, cities, stars, or animal species. On a more mundane
level, they could represent toothpaste brands, unallocated phone numbers, or the paper dimensions
known to a particular brand of photocopier.

Given that we have a collection of things, what operations might we want to perform? In the card and task
examples above, the obvious operation is sorting. Let's try to come up with some more operations.

Suppose that you've finally got underway with your tasks and are writing the essay. You decide to stop for
lunch. You hadn't bothered to list eating as a task. (You realise that the task-planning app needs to be
smarter than you originally thought.) While having lunch, an important message arrives. While you deal
with that, and while your lunch gets cold, the doorbell rings… With interruption upon interruption, you're
worried that you'll lose track of what you were doing. So you keep a new collection of ongoing tasks:
['write essay', 'have lunch', 'deal with message', 'answer door']. What are the operations you need to work
with this collection, in order to be able to resume the most recently suspended task?

Think of some other real-world problem that involves collections, and that motivates some new operation,
such as finding the maximum, or processing items in the order they arrived, or ensuring there are no
repeats. Identify the operations you need for this problem.

For good measure, try to formalise these operations, writing down signature specifications. Don't forget
the operation which creates the original, empty instance of the type. What more do you need in order to
make this into an official ADT?

Given the prevalence of collections in algorithmic problem solving, several standard collection types have
been established. Here we will take a look at the List and Array ADTs.

The List ADT
Recall our first example above, the iteration that produced the Fibonacci Sequence. Each time through
the loop, it appended an item to a list. We can formalise this operation as: append: List × item → List.
However, there's a more general meaning of append, in which two lists are joined or concatenated
together.

What is the signature specification for the append operation, which joins two lists together to make a new
list? 1

Once we have built up a list, we probably want to access its contents. In the case of lists, we can access
the first element, or we can get the rest of the list (everything but the first element). Here are the
signature specifications:

first: List → item
rest: List → List
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(At this point, you're probably wondering why we don't allow ourselves direct access to the contents of a
list using indexing, e.g. using mylist[i] to get the i'th element. However, this is the Array ADT, and we will
discuss it below.)

The List ADT standardly includes a special method called "cons", short for construct, with the following
signature:

cons: item × List → List

The behaviour of this operation is the inverse of the first and rest operations above. In other words, for
any list l, if we "cons" the head of l with the rest of l, we get l. (Formally, for all non-empty lists l,
cons(first(l), rest(l)) = l.)

To round out the definition, we provide a new_list operation, an operation to test whether a list is empty,
and an operation to report the length of the list. Here is the complete definition:

new_list: → List
cons: item × List → List
first: List → item
rest: List → List
is_empty: List → boolean
len: List → int
is_member: item × List → boolean
append: item × List → List

The Array ADT
An array is a multi-dimensional structure accessed using coordinates. For instance, here is a 3×2 array:

We access a cell using indexes like x[2, 1] and this returns the value 42.

For simplicity, we will look at 1D arrays here. We can write down the following signature specifications:

new_array: int → Array
set: Array × int × item → Array
get: Array × int → item

Notice how we need to specify a size when we initialise an array. Here's an example of the use of these
operations to produce the array ["three", "blind", "mice"]

x = new_array(3)
x = set(x, 0, "three")
x = set(x, 1, "blind")
x = set(x, 2, "mice")

For convenience, a programming language would usually allow us to perform the above operations by
typing the following instead:
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x = new_array(3)
x[0] = "three"
x[1] = "blind"
x[2] = "mice"

The meaning of the array operations is fairly easy to state. We just want to ensure that when we set an
array index i to have some value val, then when you access i, you get val. In other words: get(set(x, i,
val), i) = val.

Lists vs 1D arrays
The List and Array ADTs look very different, even though both can be used to represent a sequence of
items. One source of confusion is that programming languages usually provide a mash-up of the two
operations, and call it a list!

The key to understanding the difference is that a list can expand or shrink as needed, while an array has a
fixed size that is specified when it is created. This difference might seem arbitrary in the case of 1D
arrays, but for arbitrary dimension arrays (or matrices), it makes perfect sense. There are deeper reasons
for making this distinction that have to do with efficient storage in the memory of a computer, that go
beyond the scope of this course.

What is this item you speak of?
We have been slightly careless in writing formal definitions that involve an undefined thing that we simply
refer to as "item". What is an item? In reality, it is anything we need it to be in order to model the
problem. But since we envisage collections of elements all having the same type, we should do more than
this.

We can think of "item", as used in our signature specifications, as standing for any type that we care to
name. Thus, the List ADT, defined over integers, would be as follows, where the only changes from the
above definition are shown in bold:

new_list: → List
cons: int × List → List
first: List → int
rest: List → List
append: List × List → List
is_empty: List → boolean

Thus, our collection ADTs are templates. Strictly speaking, we should specify the type of the contained
item at the same time as specifying the type of the container. For example, we might have List(int) or
Array(string).

How would you write the type for an array of lists of integers? 2

More collection ADTs
In this module we've seen the List and Array ADTs. These are just two of several standard collection ADTs,
and we will look at the rest in the next module.
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1 append: List × List → List
2 Array(List(int))
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2.7.4
More Collection ADTs
Abstract Data Types are a fairly straightforward idea, once you get the hang of them. In this module, we
will cover the rest of the collection data types: Stack, Queue, Priority Queue and Dictionary.

The Stack ADT
We already encountered a popular motivation for stacks, namely keeping track of uncompleted tasks
during interruptions. If you pause your work on an essay in order to have lunch, once you finish your
lunch, you will hopefully get back to that essay. However, if an important message arrives during lunch,
you might deal with that before finishing your lunch (and then getting back to the essay). And if the
doorbell rings while you're dealing with that message…

The stack is a last-in first-out (LIFO) structure. We add and remove items using the push and pop
operations:

The contents of a stack, like a list, is just a sequence of items. However, unlike a list, we are constrained
in how we can manipulate those items. There's only one place where we can operate: the top.

The operation of push adds an element to the stack. So, given a stack and an item, it pushes the item
onto the stack and returns the new stack.

What is the signature specification for the push operation? 1

There are three more operations. Top accesses the first item on the stack. It allows us to inspect this item,
without modifying the stack. It is an error to use this operation when the stack is empty.

What is the signature specification for top? 2

Pop returns the stack that results from removing the top element. The resulting stack is one element
smaller. It is also an error to use this operation on an empty stack.

What is the signature specification for pop? 3

Is_empty returns True just in case the stack is empty.
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What is the signature specification for is_empty? 4

Is our Stack ADT specification complete, in terms of operations? 5

Aside: Implementing stacks using lists
We could write down an implementation of the Stack ADT using lists. In fact, this is how it is done in Edgy
(see the Javascript code (https://github.com/snapapps/edgy/blob/master/edgy/collections.js#L595) for Edgy's stack
implementation). Here's the pseudocode:

def new_stack():
    return new_list

def push(s, item):
    return cons(item, s)

def top(s):
    return first(s)

def pop(s):
    return rest(s)

def size(s):
    return len(s)

def is_empty(s):
    return is_empty(s)

This is implementation detail, the "how". It demonstrates that a stack is a list with restricted operations.
This implementation is not part of the ADT specification. With a little ingenuity, we can also implement
stacks using arrays, as shown below.

def new_stack():
    s = new_array(1000000000)
    s[0] = 0
    return s
def push(s, item):
    s[0] += 1
    size = s[0]
    s[size] = item
    return s
def top(s):
    size = s[0]
    return s[size]
def pop(s):
    s[0] -= 1
    return s
def size(s):
    return s[0]
def is_empty(s):
    if s[0] == 0:

https://github.com/snapapps/edgy/blob/master/edgy/collections.js#L595
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        return True
    else:
        return False

We've now seen two implementations for stacks. Remember that the Stack ADT is just the definition, i.e.
the syntax (signature specification) and the semantics (axioms). There can be more than one
implementation of an ADT; but these are not the ADT!

Crucially, we are able to use an ADT based on its definition, without paying attention to the
implementation. We can use the axioms to test whether an implementation is correct, without inspecting
the implementation (i.e. black box testing).

Summary
Here is the syntactic specification for the Stack ADT:

new_stack: → Stack
push: Stack × item → Stack
top: Stack → item
pop: Stack → Stack
is_empty: Stack → boolean
size: Stack → int

The Queue ADT
Recall that a stack is a LIFO structure. A queue, on the other hand, is FIFO.

What does FIFO stand for? 6

The queue operations are enqueue and dequeue. Enqueue adds a new item to the queue, while dequeue
reports the item at the head of the queue, and removes it from the queue. Can you write down the
complete signature specification for a queue? Give it a go now.

Check your definition of the Queue ADT 7

You might like to test your understanding of the queue operations by writing down some axioms.

What are the axioms for is_empty? 8 What are the axioms for length? 9

Here's some more Queue axioms. You are not expected to remember them, but they are good to think
about. The first one says that if we enqueue an item to an empty queue, then it must be at the front of
the queue:

front(enqueue(new_queue, val)) = val

Here's a more complex axiom, which states that so long as the queue has at least one item in it, you can
do enqueue then dequeue, or dequeue then enqueue, to get the same result:

dequeue(enqueue(Q, val)) = enqueue(dequeue(Q), val) (size(Q) > 0)

For example, both of the following produce the same result, namely a queue of length 1 containing
"Mary".
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Q = new_queue()
Q = enqueue(Q, "John")
Q = enqueue(Q, "Mary")
Q = dequeue(Q)

Q = new_queue()
Q = enqueue(Q, "John")
Q = dequeue(Q)
Q = enqueue(Q, "Mary")

The Priority Queue ADT
A priority queue is like a queue, only you can specify the priority for an element when you add it, and you
can modify the priority of an element that's in the queue. If you've ever waited in line at the airport and
then had your flight called out, and been asked to jump to the head of the queue, you have experienced a
priority queue. Similarly, if you have ever waited in the emergency department of a hospital for hours,
continually bypassed by more urgent cases, you know what it feels like to be an element of a priority
queue.

For concreteness suppose that we have three priorities: high (3), medium (2), and low (1). And suppose
the following events unfold in the emergency department, in sequence:

Kim arrives with a grazed knee from falling off her skateboard while attempting a new trick. The
staff assess her as low priority and ask her to take a seat.
Lee is suffering trauma from a car accident and needs urgent surgery. The staff assess him as high
priority and he is sent to an operating theatre.
Sue arrives with a fractured arm. The staff assess her as medium priority and ask her to wait, and
promise it won't be for long.
Alan has concussion and is assessed as medium priority.
Sue is called for treatment

Here is the corresponding sequence operations and the resulting priority queue after each one:

Q = new_priority_queue() → []1.
enqueue(Q, Kim, 1) → [(Kim, 1)]2.
enqueue(Q, Lee, 3) → [(Kim, 1), (Lee, 3)]3.
front(Q) → Lee4.
dequeue(Q) → [(Kim, 1)]5.
enqueue(Q, Sue, 2) → [(Kim, 1), (Sue, 2)]6.
enqueue(Q, Alan, 2) → [(Kim, 1), (Sue, 2), (Alan, 2)]7.
front(Q) → Sue8.
dequeue(Q) → [(Kim, 1), (Alan, 2)]9.

Extend your definition of the Queue ADT to the Priority Queue ADT. Don't forget to define the set of
objects it applies to. Just one operation needs a different signature specification.

What is the modified signature specification required for the Priority Queue ADT? 10

One further operation is needed. Suppose that the status of the patients waiting in the emergency room
can change over time. For example, perhaps Alan's concussion is worse than originally expected and he
faints, and his priority is changed from medium to high. What operation would be needed for this?

Suggest an operation for updating the priority of an existing item? 11

The Dictionary ADT
We're familiar with the idea of a dictionary, which allows us to look up a word to get information such as
pronunciation or meaning. The Dictionary ADT generalises from this idea, allowing us to access any kind
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of information (the "value"), using any fixed lookup "key". Here are some examples:

(https://www.alexandriarepository.org/wp-content/uploads/20151025214652/maps03.png)Note that the lookup is from key to
value (e.g. name to phone number, domain name to IP address, etc), and not the other way around.

So the most basic operations on a dictionary are to create an empty one, assign a value to a key, and look
up that value.

new_dict: → Dict
set: Dict × key × value → Dict
get: Dict × key → value

It is common to use shorthand for dictionaries. So instead of writing: mydict = set(mydict, "Dana",
"x642"), we typically write mydict["Dana"] = "x642".

Note also that the type of key and value is not specified, though it's usual to assume that the key is not
something that can ever be modified once it has been created (for this you'd delete it and create a new
key to hold the same value).

Dictionaries typically support the following additional operations:

del: Dict × key → Dict
in: Stack × key → Boolean
size: Dict → int
keys: Dict → List

1 push: Stack × item → Stack
2 top: Stack → item
3 pop: Stack → Stack
4 is_empty: Stack → boolean

new_stack: → Stack

It is also a good idea to include a size operation:

size: Stack → int
5 It is not complete. We need to provide an operation that creates a new empty stack:
6 first-in first-out
7 new_queue: → Queue

enqueue: Queue × item → Queue
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front: Queue → item
dequeue: Queue → Queue
is_empty: Queue → boolean
len: Queue → int

8 is_empty(new_queue) = True
is_empty(enqueue(Q, val)) = False

9 len(new_queue) = 0
len(enqueue(Q, val)) = len(Q) + 1
len(dequeue(Q)) = len(Q) - 1

10 enqueue: PriorityQueue × item × priority → PriorityQueue
11 update_priority: PriorityQueue × item × priority → PriorityQueue
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2.7.5
Application: Graph Traversal
In an earlier module we saw how to traverse a graph using Breadth First Search (BFS) and Depth First
Search (DFS). Recall how we used lists to keep track of the unvisited (red) and to-be-visited (green)
nodes.

We return to the graph traversal problem, in order to demonstrate the List, Queue and Stack ADTs.

BFS with the List ADT
We need to keep track of the nodes that are still to be visited. Instead of colouring them green, we will
simply maintain an extra list Q.

Algorithm BFS_original
input: two nodes A, B
output: True if there is a path from A to B, False otherwise

Q := new_list
Q := append(Q, A)

repeat until is_empty(Q)
    C := first(Q)
    Q := rest(Q)
    mark C as visited
    if C = B
        return True
    foreach neighbour N of C
        if N is not marked as visited
            Q = append(Q, N)

return False

BFS using the Queue ADT
Here we will replace the list Q with the Queue ADT. Notice that the structure of the program is the same.
We just replace List operations (new_list, append, first, rest) with the corresponding Queue
operations (new_queue, enqueue, front, dequeue).

Algorithm BFS
input: two nodes A, B
output: True if there is a path from A to B, False otherwise

Q := new_queue()
Q := enqueue(Q, A)

repeat until is_empty(Q)
    C := front(Q)
    Q := dequeue(Q)
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    mark C as visited
    if C = B
        return True
    foreach neighbour N of C
        if N is not marked as visited
            Q = enqueue(Q, N)

return False

DFS using the Stack ADT
Here we will replace the queue Q with a stack, and use the stack operations (new_stack, push, top,
pop).

Algorithm DFS
input: two nodes A, B
output: True if there is a path from A to B, False otherwise

S := new_stack()
S := push(S, A)

repeat until is_empty(Q)
    C := top(S)
    S := pop(S)

    mark C as visited
    if C = B
        return True
    foreach neighbour N of C
        if N is not marked as visited
            S = push(S, N)

return False
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2.7.6
An extreme example: integers
It may surprise you, but we can extend our concept of abstract data types to something as fundamental
as integers.

The Integer ADT
The Integer ADT applies to the set of integers Z, and includes the following operations. (The first
operation could have been called zero or new_int.)

0: → int
+: int × int → int
-: int × int → int
-: int → int
++: int → int
--: int → int
is_zero: int → bool

This is the syntax for integers. It consists of a list of signature specifications, which specify the available
operations and how they are used. Thanks to these syntactic definitions, we know that the following
expressions are well-formed: x+y, -x, x+(y+z), x++, is_zero(x). We also know that the following are ill-
formed: x+, xy, is_zero.

The semantics is expressed using axioms, e.g.:

x + 0 = x
x + -x = 0
x + y = y + x
x + (y + z) = (x + y) + z
is_zero(0) = True
is_zero(0++) = False
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2.8.1
Suspicious Boyfriends

A warm up problem: suspicious boyfriends
Its after midnight… two couples emerge from a club. They want to get across town to another club. They
have a single motorbike between them, which they can all drive. It carries at most two people at a time.
The two guys are suspicious and will not tolerate their girlfriend being left alone with the other guy. Can
they use the bike to get across town from the origin to the destination, or must they walk? (This is a
restatement of the jealous husbands problem (https://en.wikipedia.org/wiki/Missionaries_and_cannibals_problem).)

Data modelling activity
Try to represent this problem using physical objects, e.g. coins, pencil, and paper. Answer the following
questions for your representation:

What real-world entities are modelled in your representation? What represents what?1.
What are the start and end configurations?2.
How many different configurations are there?3.

Can you solve the problem using this representation?

Terminology: a configuration of real world entities is also known as a state. Think of this as a "state of
affairs in the world".

This is a physical model. The next step is come up with an abstract model, where each state is
represented by a label. For instance, we might write the initial state as "g1=start, g2=start, b1=start,
b2=start". However, there's any number of ways you might like to represent the state of people, bike, and
locations. For example, a state could be represented using a little diagram, like a picture of a domino
block, with two halves representing the two locations, and figures to represent the people and the bike.

Discussion of illegal states
The problem talked about suspicion. We want to rule out some of the states as "illegal". Using the
notation you devised above, write out the illegal states, and discuss with a small group, to make sure
you're agreed.

Try to express these illegal states more compactly. E.g. we could talk about g1 being present with b2,
regardless of whether that is at the origin or the destination, by writing g1=b2.

Now try to write down a boolean expression for an illegal state, combining such expressions using ∧
(and), ∨ (or), and ¬ (not) operators.

(As you think about this, you might need to decide whether being on the bike at the origin or destination
counts as being in that location.)

https://en.wikipedia.org/wiki/Missionaries_and_cannibals_problem


2.8.1 Suspicious Boyfriends

116

Let's put this on hold for now. We will use it later when we're generating the states, in order to rule out
illegal states.

Aside: generating all possible states
How will we enumerate all of the states? This requires generating all possible combinations, where each
combination looks something like: g1=0, g2=1, b1=0, b2=1, bike=1. Here's a hint:

Try to write code to generate all 32 nodes. Use variable names that correspond to the way you labelled
each entity, e.g. girl1 or g1.

It is a good idea to store the location of each person and the bike as a separate attribute. So make five
node attributes corresponding to each of your variable names. They can be the same name, so you might
end up with something like the following:

That leaves the question of how to label the nodes. The simplest way is to use the join block, to combine
the variables into a string that serves as the node label, e.g. 10101.

Putting it together: Now that you can generate the states, bring in your boolean expression for
detecting illegal states, and colour all those states red.

Building the graph
At this point, you'll have a collection of states, and the problem is how to link them up. Which states are
reachable from which states, in a single "move" (or transition), i.e. in a single motorbike trip from origin to
destination or back?

Here are some things to think about:

what happens to the location of the bike after each transition?
what is the capacity of the bike? i.e. how many people can change location with each transition?
will the transitions (edges) be directed? i.e. will you use an undirected graph or a directed graph?

It's easy enough to check whether someone moved, using the following condition, assuming that we
stored the locations using node attributes.
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So the problem becomes one of checking that the bike moved appropriately, and that at least one person
moved (i.e. there was a driver), but not too many people moved.

You will need to do that for all possible pairs of nodes. How do you generate all possible pairs of
something? Hint: Look back to our discussion of generating all possible states, but this time, you'll want to
use the "all the nodes" block, with a suitably-chosen control block.

Pruning the graph
Once you've added in all of the edges, you can simply delete all of the illegal states, and any transitions
that involve those states will disappear at the same time.

Note that it was convenient to generate all the states (including illegal ones), then add all the transitions
before deleting the illegal states. Instead, we could have generated the states, deleted illegal states, then
added transitions. The former turns out to be considerably easier to code, even though it is slightly less
efficient in terms of the total number of computational steps (creating nodes only to remove them later).
Can you think why this is?

Search
The final task is to perform breadth first or depth first search, to try to find any paths from the start node
to the end node.

What is the length of the shortest path, and how many shortest paths are there? Are there longer paths?
What's the longest path?

What algorithm design strategy have we used to solve the suspicious boyfriends problem?
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2.8.2
Building the graph

Setting up the Graph
In planning and decision making, a graph node is used to model a particular state of affairs in the world,
such as the configuration of pieces on a game board. If one state is reachable from another (e.g. by the
move of a game), then we add an edge between them. Under what circumstances would such an edge be
directed or undirected?

Now, some states may turn out to be unreachable. We need to decide if we're going to generate them all
then link them up (as we did for the suspicious boyfriends case) or if we're going to start with an initial
state and generate just the states that are reachable (as we saw for tic-tac toe). Could we have done
things differently? Could we have applied the generate-all-then-link method for tic-tac-toe? Could we have
applied the build-out-from-start-state for suspicious boyfriends case? Why might it be preferable to use
one of these methods over the other?

Labelling the nodes
Remember that the nodes of a graph are just a set. We give them names or "identifiers" in order to have
a convenient way of referring to them. These identifiers could just be integers, but it's often more helpful
to assign meaningful names to nodes, names that remind us what they represent. Thus, we came up with
names like -x-|xo-|ox- for tic-tac-toe.

Such names are strings, and it is almost always a bad idea to break such strings back down in order to
analyse a state in our program. Instead, it's better to have separate human-readable and machine-
readable ways to represent information about a state.

For example node -x-|xo-|ox- could have an attribute called "board" whose value is a list of rows,
where each row is a list of integers, as we see below:

Now when it comes to identifying which player has won, we can conveniently iterate over cells by
accessing the board attribute, instead of trying to split apart the label into x's, o's and -'s.

Generating all nodes then linking
Generating nodes in a state graph may require nested iteration. Suppose we are solving a problem that
involves three entities (such as a farmer, goat and chicken, or three light globes), and each entity can be
in one of several locations (such as river-side or boat, or on or off). Then we would need the following
nested for loops:

for entity1 in <possibilities for entity1>:
   for entity2 in <possibilities for entity2>:



2.8.2 Building the graph

119

      for entity3 in <possibilities for entity3>:
         new_node(entity1_entity2_entity3)

This is a general-purpose pattern for generating all combinations. For example, we can put words
together to generate simple sentences as follows. You might like to try this for sentences of 3 or 4 words
in length.

Once we have generated all the nodes, we need to link them. The most natural way to do this is to
identify the precise conditions for linking a pair of nodes, based on the information available in just those
nodes. For example, if we were applying this method to tic-tac-toe, we would add an edge just in case the
nodes differ by a single piece, e.g.

step 5: -x-|xo-|ox-
step 6: -xo|xo-|ox-

So, how do we detect that exactly one position has changed? We can define a function that counts up the
changes as follows. It processes all the cells, comparing what the two states have for each cell:

function count_changes(n1, n2):
   num_changes = 0
   for i = 1 to 3:
      for j = 1 to 3:
         if n1.board[i][j] = 0 and n1.board[i][j] ≠ n2.board[i][j]:
            num_changes = num_changes + 1
   return num_changes

Note that we only consider changes that involve an empty cell that becomes something other than
empty, using the test: n1.board[i][j] = 0

Now we can consider all pairs of nodes, and use the above test to see if they should be connected or not.

for node1 in <node set>:
   for node2 in <node set>:
      if count_changes(node1, node2) = 1:
         new_edge(node1, node2)



2.8.2 Building the graph

120

Building out from the start state
Our other way of creating nodes is to begin with a start state, such as an empty tic-tac-toe board, and
consider all possible ways to transition out of that state, such as placing an x on the board. In this
approach, we will create nodes and edges at the same time.

As before, we need to devise a way to label our nodes, and might want to put information into one or
more attributes for ease of access later.

Then we need to generate all "next states", i.e. enumerate all possible moves and create a state for each
one, linked from the start state. For example, in a tic-tac-toe board, there's nine places for the first player
to place their piece. (Of course, some of these are duplicates because of the inherent symmetries of the
game, but we will ignore that for now.)

In general, a move consists of replacing an empty cell (value zero) with an x piece (value 1) or an o piece
(value 2). Given a particular state, we want to scan it for empty cells. For each empty cell, we want to
create a new state which has the piece in that cell.

function generate_next_states(state, piece):
   for i = 1 to 3:
      for j = 1 to 3:
         if state.board[i][j] = 0:
            new_state = state
            new_state.board[i][j] = piece
            new_edge(state, new_state)

Each time we create a new state, we also create an edge that goes to that state.
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2.8.3
Planning: putting it all together

Suspicious Boyfriends Again
It's time to put together the ideas in this series of modules on planning and decision making, to provide a
complete solution of the Suspicious Boyfriends problem. First we give the algorithms: generating legal
states, generating the edges between them, and finding a path from the initial state to the final state. At
the end of this module we give a link to a complete solution in Edgy for you to try.

Generating the Legal States
We will let 0 and 1 represent the origin and destination. We use nested iteration to "multiply out" all the
possibilities.

function make_states()
   for B1 in 0 to 1:
      for G1 in 0 to 1:
         for B2 in 0 to 1:
            for G2 in 0 to 1:
               for M in 0 to 1:
                  if not (B2=G1 and B1≠G1 or B1=G2 and B2≠G2):
                     add node B1_G1_B2_G2_M

An illegal state occurs when G1 is in the presence of B2 (G1=B2) and B1 is absent (B1≠G1), and
conversely for G2.

Adding the Edges
We consider all pairs of legal nodes (n1, n2), and check whether there is a legal move that takes people
(and the motorbike) from location 0 to location 1.

function add_edges()
   foreach node n1:
      foreach node n2:
         num_moves = 0
         legal = True
         if motorbike moves from 0 to 1:
            foreach person:
               if person moves from 0 to 1:
                  increment num_moves
               if person moves from 1 to 0:
                  legal = False
         if legal and 1 <= num_moves <= 2:
             add an edge from n1 to n2

Notice how we count the number of people who move, and we make sure they move in the right direction,
before adding an edge.
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Iterative DFS
We will need to apply DFS to search the graph for a path from start to finish. We use an additional stack T
which records the fact that we have visited a previously unvisited node (C). If no unvisited nodes can be
reached from here, we pop C from the stack. It is not part of a path to the solution. (If it was, we would
have already found a path via one of C's neighbours that did not involve going via C.) An Edgy
implementation of this algorithm is available, and defines a reporter block called dfs (see dfs-iterative
(https://www.alexandriarepository.org/wp-content/uploads/20150414005907/dfs-iterative.xml)).

function dfs(A, B)
   mark all nodes as unvisited
   S = newStack(A)
   T = newStack()

   repeat until isEmpty(S)
      C = top(S)
      S = pop(S)
      T = push(T, C)
      mark C as visited
      if C == B
         return T
      viable = False
      foreach N in neighbours(C)
         if N is not marked as visited
             S = push(S, N)
             viable = True
      if not viable
         T = pop(T)
   return []

Edgy Implementation
A complete implementation of the above pseudocode is available: Suspicious Boyfriends
(https://www.alexandriarepository.org/wp-content/uploads/20150414005907/Suspicious-Boyfriends.xml)

https://www.alexandriarepository.org/wp-content/uploads/20150414005907/dfs-iterative.xml
https://www.alexandriarepository.org/wp-content/uploads/20150414005907/Suspicious-Boyfriends.xml
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2.9
Path Finding
[draft for preview only; BM]
You should by now know how to find a path between two nodes in a graph using one of the two basic
patterns for graph traversal, breadth first search and depth first search.

A more interesting problem than just finding any path is to find the best path. Best, of course, can have
many different interpretations. Probably the most basic one is that of the shortest path.

Imagine you want to travel from Melbourne to Sydney driving the shortest distance. To solve this
problem, you can model the road map as an (undirected) graph that has cities as its nodes and roads as
its edges. The driving distances between the cities can be captured as weights on the edges. Finding the
shortest route between the two cities now amount to finding the shortest path between two nodes in the
network, where the length of a path is defined as the sum of all edge weights on this path.
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[image from http://en.wikipedia.org/wiki/File:GA20891.pdf under Creative Commons
(http://en.wikipedia.org/wiki/en:Creative_Commons) Attribution 3.0 Australia (http://creativecommons.org/licenses/by/3.0/au/deed.en)
license.]

But finding shortest path lets us solve a much broader class of problems. For example, if we want to fly
from A to B our definition of best path may be the cheapest connection. In that case we would label the
edges with the prices for flight segments. Finding shortest paths even lets us solve important industrial
problems, for example, how the processing steps in a production facility should be sequenced to optimize
its throughput and efficiency.

It should not be too hard to sketch a simple algorithm to find such a shortest path.

Describe a basic idea for a naive algorithm to solve the shortest path problem 1

Surely this would work. But let us stop for a second. is this a good way to go about the problem? The core
question is, how many different paths would we have to check? Let's just a look at what could happen in
the worst case.

Which graph with n nodes has the maximum number of possible paths between two nodes A, B. 2

How many paths between two nodes A, B, can exist at most in a graph with n nodes and m edges? 3

This is bad news. Look at the plot of this function below. Let's assume that generating and checking a
single path takes just 1 microsecond, then checking all 2606501 possible paths for K10 would then
already take 2.6 seconds! And that's just 10 cities! You may think that is not so bad, but the function

http://en.wikipedia.org/wiki/File:GA20891.pdf
http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by/3.0/au/deed.en
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grows incredibly fast. There are 1747509302894800001 possible paths between any pair of cities in a
complete network of 20 cities, which means that finding the shortest path would now take at least
1747509302894800001 microseconds or 55413.2 years!!

This is typical of naive generate-and-test algorithms. Often the number of possible solutions that have to
be tested grows so fast with the problem size that generate and test is prohibitively expensive and we
need to find a faster algorithm (hoping that one exists).

Can you compare the number of possible paths for a graph with n nodes to the exponential function 2^n 4

Can you imagine why the exponential function 2^n often enters into the number of candidate solutions
that have to be checked by a generate-and-test algorithm? 5

In general, if a generate-and-test algorithms has to check all possible subsets, its runtime will grow (at
least) exponentially with the size of the problem.

Surely, we should be able to find a better solution for the shortest path problem. If we look at a map to
find a shortest path, we might be tempted to employ a heuristic (a method of informed guessing), for
example, "keep moving in the general direction of the destination", but this does not work in an arbitrary
graph that is not embedded into an actual physical space (more mathematically speaking, into a metric
space, where we can rely on the usual laws of distances, for example that the direct line from A to B is
never longer than going from A to C and then from C to B).

Since we want a general method, we need a better idea. Edsger W. Dijkstra
(http://en.wikipedia.org/wiki/Edsger_W._Dijkstra) found this idea in 1956. His algorithm to solve the shortest path
problem is known as Dijkstra's algorithm (http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm).

1 Enumerate all paths from A to B, store them in a list or other collection and then search for the minimum.
2 A complete graph. It allows us to take any path with n nodes, (n-1) nodes, (n-2) nodes, …, down to two nodes (the direct

connection). On each of these paths we can visit the nodes in any order.
3 Lots! If we assume that the graph is complete (as above) we can take intermediate paths of any length between 0 and

(n-2) nodes to get from A to B. The order of the nodes on these paths is arbitrary. Since n items can be arrange in n!

ways, we obtain as the total number of paths 
4

http://en.wikipedia.org/wiki/Edsger_W._Dijkstra
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
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 grows much more slowly than the number of possible paths. This should be obvious, because  is the number
of combinations of intermediate nodes that we can pick between A and B in a complete graph and the formula needs to
account for the reordering of nodes on top of this!

5
 is the number of subsets that can be picked from a set of n items (the size of the powerset on n items). Generate and

test algorithms often have to find just such a subset. For example, if we ignored the fact that we can reorder the nodes on

a path in the above problems, there are  ways to pick paths.
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2.9.1
Dijkstra's Shortest Path Algorithm
Dijkstra's algorithm is the best solution to finding a shortest path between two nodes A, B in a weighted
graph G that only has positive edge weights (this is important, as you will see later). It can also be used to
find the shortest paths from a given node to all other nodes in the graph. Finding the shortest paths
between all possible pairs of nodes in a given graph is a related problem, and Dijkstra can be used to
solve this, but in many cases another algorithm is a better choice. We will look at this later. For now we
focus on the problem of finding the shortest connection between two given nodes A, B.

The following video explains the basic idea and logic behind Dijkstra's Algorithm.

(https://www.alexandriarepository.org/wp-content/uploads/20150326132651/Dijkstra.mp4.mp4)
In summary, the algorithm incrementally builds a tree T of shortest paths from A to all nodes. At all points
of time all nodes in the graph have an estimate on their shortest distance from A. This estimate is an
upper bound. In the beginning, there is no knowledge of about these distances, so the estimate is
initialised to infinity. In each iteration a single node C is added to T. This is the closest node to A that is
not yet in T. Immediately after adding a new node C to the tree, the distance estimates of the neighbours
X of C that are not yet in T are reconsidered. If they can be reached via C on a shorter distance than the
previous estimate, their distance will be updated. This step is called a "relaxation". Its result is a better
(tighter) upper bound on the shortest distance of X from A. The relaxation step is detailed separately in
this video.

https://www.alexandriarepository.org/wp-content/uploads/20150326132651/Dijkstra.mp4.mp4
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(https://www.alexandriarepository.org/wp-content/uploads/20150326130003/Relaxation-in-Dijkstra.mp4.mp4)
When X is the node outside of T with the lowest distance estimate, we know that its upper bound is tight
and cannot be relaxed further.

Can you explain why this is the case? 1

This is the reason why Dijkstra's algorithm can work in greedy fashion. We know when a node can be
safely added to T and we know that we never need to reconsider such a node.

Can you explain why this algorithm is not guaranteed to work if there are negative weights (distances) in
the graph? 2

The upshot of this consideration is that we cannot use a greedy approach a la Dijkstra if there are
negative weights. Instead we will have to revise the distance estimates of all nodes continuously. This is,
of course, much more costly (i.e. requires more computational effort). The corresponding algorithm is
called Bellman-Ford's shortest path algorithm and will be discussed later.

Which ADT would be suitable to keep track of the distance estimates? 3

Here is the high-level pseudocode for Dijkstra's algorithm and an implementation in Edgy (NB: the edgy
implementation currently does not use the priority queue ADT due to a bug in its implementation. This will
be fixed soon.)

Algorithm Dijkstra

input: an edge weighted graph G; two nodes A, B;
output: the shortest path distance from A to B
assumption: B is reachable from A,
            all edge weights w(x,y) are positive

Q=newPrioQueue() (* the queue of open nodes not in T *)

https://www.alexandriarepository.org/wp-content/uploads/20150326130003/Relaxation-in-Dijkstra.mp4.mp4
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                 (* Q is a minimum priority queue *)

foreach node x in G
   initialize distance estimate d(x) to infinity
initialize d(A) to 0

foreach node x in G
   Q := enqueue(Q,x)
current = minimum(Q)
Q := dequeue(Q)

while current is not B do
   foreach neighbour x of B
       update d(x) := min(d(x), d(B)+w(B,x))
       Q := updatePriority(Q, x, d(X))

return d(B)

Exercise: Change the pseudo-code and edgy implementation such that it computes the shortest distance
to all nodes from A

Exercise: Extend the pseudo-code and Edgy implementation such that it memories the shortest path to
each node an returns the shortest path to B. Hint: The basic idea is the same that we used for strong
paths in BFS, by using a predecessor attribute at each node.

1 X has the shortest distance from any node in T (as its estimate is the lowest). If we were go via some other node Y outside
of T, the lowest possible distance from A to X on such a path would be the distance of A to Y. Since the distance of A to Y
is greater than the distance from A to X we know that there can be no alternative shorter path from A to X involving nodes
outside of T. Thus the distance estimate to X is now tight and it being the lowest, we can safely add X to T.

2 Consider the explanation of the relaxation step above. Assume that X is a neighbour of Y and that the distance from Y to X
is negative. Let the current distance estimate of X be d(X)>0. Let the shortest distance from A to Y be d(Y)>0 and let the
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edge weights (distances) d(Y,X)=-d(A,Y). The distance estimate from A to X can thus be bettered (decreased) by going via
a node that is further from A than X. Thus, we cannot guarantee that a node does not need to be reconsidered when it is
added to the tree.

3 We always want to handle the node with the shortest distance estimate next and once we have handled it we do not need
to keep track of it anymore. Distance estimates are continuously updated. Thus an adaptive (updatable) priority queue
that sorts priorities in ascending (i.e. a min priority queue) is ideal.
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2.9.2
Bellman-Ford's Shortest Path Algorithm
[draft for preview only; BM]
Note: This module assumes familiarity with Dijkstra's Algorithm.

Dijsktra's Algorithm is clearly the best choice for computing a shortest path between two nodes if there
are no negative edge weights in the graph. However, if there are negative weights it does not work and
we need to proceed differently.

Before we discuss how to find a shortest path in the presence of negative edge weights, note that the
presence of negative weights implies that the graph must be directed.

Why is it not meaningful to look for a shortest path in an undirected graph with negative edge weights? 1

The essentially advantage of Dijkstra's algorithm is that it never reconsiders an edge once it has been
processed. This is what makes it fast. However, if there are negative edge weights we know that we may
still find a better (shorter) distance to the node that this edge leads to at a later point of time so that we
may have to reconsider it. The edge relaxation step itself still works perfectly fine, of course. We simply
may have to repeat it several times even for the same edge.

Our first shot at the problem, keeping the same edge relaxation, may look like this

Algorithm not-quite-Bellman-Ford

input: an edge weighted directed graph G; two nodes A, B;
output: the shortest path distance from A to B
assumption: B is reachable from A

foreach i from 1 to number of nodes node x in G
   initialize distance estimate d(x) to infinity
initialize d(A) to 0

repeat until d(x) remains unchanged for all nodes x
  foreach edge e in allEdges(G)
     d(endNode(e)) := min(d(endNode(e)), d(startNode(e)+w(e)))
  end
end

return d(B)

We could implement the algorithm in this form, but maybe there is a better way to terminate the
relaxation?

Can you find an upper bound on the number of times an edge has to be relaxed? 2

Based on this consideration we can simply apply a fixed limit on the number of edge relaxations. The
resulting algorithm is known as Bellman-Ford's algorithm.

Algorithm Bellman-Ford
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input: an edge weighted directed graph G; two nodes A, B;
output: the shortest path distance from A to B
assumption: B is reachable from A

foreach i from 1 to number of nodes node x in G
   initialize distance estimate d(x) to infinity
initialize d(A) to 0

for i from 1 to length(allNodes(G))-1
   foreach edge e in allEdges(G)
       d(endNode(e)) := min(d(endNode(e)), d(startNode(e)+w(e)))
   end
end

return d(B)

Clearly, Bellman-Ford does more work than Dijkstra (it performs the same edge relaxations, but more
often). We have to postpone a detailed quantitative analysis of how much slower until later, since we do
not yet have the appropriate tools to analyze this.

The following video summarizes the function of Bellman-Ford's algorithm:

(https://www.alexandriarepository.org/wp-content/uploads/20150408173936/Bellman-Ford.mp4)

In a directed graph negative edge weights do not necessarily lead to negative weight cycles, but the fact
that edges are directed by itself is no guarantee that there is no negative weight cycle. The final
consideration thus is how to test for negative weight cycles.

Can you find a simple test to check whether there are negative cycles that can be run after Bellman-Ford
has been run? 3

Below is an Edgy implementation of Bellman-Ford's algorithm.

https://www.alexandriarepository.org/wp-content/uploads/20150408173936/Bellman-Ford.mp4
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1 If an undirected graph has a negative edge weight it automatically contains a cycle of negative length (consider the
undirected edge A-B with negative weight. We can cycle around A-B-A-B accumulating more and more "negative length").
Thus the shortest path problem is ill defined because the possible path length is not bounded from below.

2 Each edge needs to be considered at most (n-1) times where n is the number of nodes int he graph. This is for the
following reason: After the i-th repetition of the outer loop, all paths of length i have been computed correctly. The longest
(cycle-free) path contains at most (n-1) edges. Thus (n-1) repetitions of the outer loop all shortest paths have been
computed correctly.

3 All that needs to be done is to run one further round of edge relaxation. If the distance estimate d(x) for any node x can
still be reduced there must be a negative weight cycle in the graph. This is because all cycle-free shortest paths (of length
n-1) had already been considered correctly before.
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2.9.3
Warshall's Transitive Closure Algorithm
[draft for preview only; BM]
The algorithms considered so far compute the shortest paths between two given nodes or from a given
node to all reachable nodes in a graph. A somewhat more complex problem is to compute the shortest
distances between all possible pairs of nodes A, B in a given graph.

Of course, given that we have solutions to compute the shortest distance from A to all nodes in the graph,
we have at least one way to do this already.

Can you give a simple (naive) way to compute the distances between all possible pairs of nodes (A, B) in a
given graph G? 1

We will return to this later. Under some additional assumptions on the structure of the graph, the naive
solution from above can even the best way to solve this task. But often it is not. There is a more direct
way to solve this problem.

Before we consider the computation of all pairs shortest paths, let's tackle a simpler problem: the
computation of reachability between all pairs of nodes (A, B). We simply want to answer the question
whether B is reachable from A or not. This problem is know as the transitive closure of a graph.

The transitive closure of a graph is a graph which contains an edge between A and B whenever there is a
directed path from A to B. In other words, to generate the transitive closure every path in the graph is
directly added as an additional edge.

Can you think of a naive way to construct a transitive closure? 2

But there is a more direct way to add the additional edges. We can simply iterate the process of
concatenating two edges (either originally in G or already inserted earlier) by iterating over all possible
combinations of start node, end node, and a middle node at which the two edges connect. In other words,
we look for a combination of edges (A,C) and (C, B) and insert a new edge (A,B) wherever we find such a
pair. The resulting algorithm is known as Warshall's transitive closure algorithm.

Algorithm Warshall

input: a graph G;
output: the transitive closure of G

foreach mid in allNodes(G)
   foreach start in allNodes(G)
      foreach end in allNodes(G)
         if not edgeExists(G, newEdge(start, end))
            if edgeExists(G, newEdge(start, mid) and
               edgeExists(G, newEdge(mid, end)) then
               addEdge(G, newEdge(start, end))
      end (* of foreach end *)
   end (* of foreach start *)
end (* of foreach mid *)

return G
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The video below summarizes how Warshall's algorithm for the transitive closure works.

(https://www.alexandriarepository.org/wp-content/uploads/20150408173958/Warshall.mp4)

Correctness of Warshall's algorithm
But how do we know that the algorithm has exhausted all options when it terminates? To see this use the
fact that the nodes are ordered in some (arbitrary) sequence from i=1…n. This is, after all, the basis of
the outer loop.

It is easy to see (by induction) that the k-th iteration of the outer loop establishes all paths that only uses
nodes 1…k as intermediate nodes (even though the start and end can be outside of the range 1…k).

This is obvious for the first iteration. At the (k+1)-st iteration all possible path from A to B that only use
nodes 1…k as intermediate nodes have already been established earlier (by induction). A new (cycle-free)
path using (k+1) can only arise if there is an edge from A to (k+1) and one from (k+1) to B that can be
joined at (k+1). Each of these edges is either an original edge or arose from a path that only uses nodes
1…k. By inserting edges from A to B for all such cases the k-th iteration establishes all possible paths that
use only nodes 1…k as intermediate nodes. Thus the algorithm correctly generates the transitive closure
after n iterations of the outer loop, where n is the number of nodes in the graph.

Below is an Edgy implementation of Warshall's transitive closure algorithm.

https://www.alexandriarepository.org/wp-content/uploads/20150408173958/Warshall.mp4
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1 Simply repeat the computation of Dijkstra (or Bellman-Ford) with each node of the graph as a start node.
2 One possibility would be simply to start a BFS from every possible node x in the graph, inserting edges from x to every

node that is reached along the way.
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2.9.4
Floyd's Algorithm for All-Pair Shortest Paths
[draft for preview only; BM]
Note: This module presumes knowledge of Warshall's transitive closure algorithm.

The problem of computing the shortest path between all pairs of nodes in a graph is almost the same as
computing the transitive closure. The extension that is needed is simply to keep track of whether a newly
emerging connection between two nodes provides a shorter path or not. Warshall's transitive closure
algorithm provides a good starting point. All that we need to do is to keep record of the current best
distance estimate between d(X,Y) between nodes X and Y and to introduce a relaxation step in the
innermost loop that checks whether a shorter connection has been found and that updates d(X,Y)
accordingly.

The resulting algorithm is known as Floyd-Warshall's algorithm or simply as Floyd's algorithm.

Algorithm Floyd-Warshall

input: an edge-weighted graph G;
output: the shortest path distances of all pairs of nodes in G

foreach start in allNodes(G)
   foreach end in allNodes(G)
     set D(start, end) to infinity

foreach e in allEdges(G)
   set D(startNode(e), endNode(e)) := w(e)

foreach mid in allNodes(G)
   foreach start in allNodes(G)
      foreach end in allNodes(G)
         D(start, end) :=
           min(D(start, end), D(start, mid)+D(mid, end))
      end (* of foreach end *)
   end (* of foreach start *)
end (* of foreach mid *)

return D

The following video summarizes the algorithm and illustrates how it works.
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(https://www.alexandriarepository.org/wp-content/uploads/20150408173947/Floyd-Warshall.mp4.mp4)
Finally, we need to consider whether this Algorithm works in the presence of negative weights.

Will the Floyd-Warshall algorithm run correctly if there are negative weights in the graph? 1

Can you think of a simple way how the presence of negative weight cycles can be detected with this
algorithm? Hint: this is best done after it has terminated. 2

Below is an implementation of Floyd's algorithm in Edgy.

https://www.alexandriarepository.org/wp-content/uploads/20150408173947/Floyd-Warshall.mp4.mp4
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1 Yes, it will obviously terminate, since it has a fixed number of iterations. The argument applied for Warshall's algorithm
still applies, i.e. all cycle free paths are considered. Furthermore, the relaxation step is in no way restricted to positive
weights. In summary, the algorithm will work correctly with negative weights.

2 We simply need to check whether there is a negative entry d(X,X) for some node X. Since the algorithm considers all
possible simple paths and correctly computes their length, there must be such an entry if a negative cycle exists.
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2.10
PageRank

Google PageRank
 (https://en.wikipedia.org/wiki/PageRank)

Have you ever wondered how web search engines deliver just the right results? It is one thing to quickly
locate pages that contain a particular search term, but when there are millions of matching pages, how
does a search engine know which one to put first?

The early success of Google as a search engine can be put down to the so-called PageRank Algorithm.
The PageRank of a page is an estimate of the importance of that page. The intuition behind the algorithm
is that if some page is linked from many important pages, then it is probably an important page too (note
that this is a circular definition). As you will see, we can compute the PageRank of a set of pages
iteratively, starting with an initial value for each page, and updating it several times until the PageRank
values converge.

The resulting PageRank values amount to a probability distribution over the set of pages. The distribution
corresponds to the likelihood that, starting on a random page and clicking random links to navigate the
web for a sufficiently long period of time, we end up at the given page.

The Web as a Graph
The Web can be considered as a graph in which the web pages are the nodes, and the hyperlinks are the
(directed) edges. This so-called "Webgraph" has a complicated structure, organised around a central
"strongly connected component" in which there exists a path in both directions between any pair of
nodes.

https://en.wikipedia.org/wiki/PageRank
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Kumar et al (2000) The Web as a Graph.
http://cs.brown.edu/research/webagent/pods-2000.pdf

The PageRank Formula
At each stage of the iteration, we take the PageRank of a page PR(page) and divide it by the number of
outgoing links from that page L(page) in order to calculate the contribution of that page to each of the
pages it links to, i.e. PR(page) / L(page).

For a given page A, we sum these weighted PageRank values for the incoming pages B, C, … Finally, we
"dampen" the contribution of incoming links by some factor d (usually set to 0.85).

Given the circularity of this definition, we get started by assigning the PageRank of every page to 1/N (this
is equivalent to setting d=0 in the above formula).

What PageRank is assigned to a page with no incoming edges?

PageRank and the Random Surfer (NEW)
The PageRank algorithm simulates the behaviour of a random web surfer, who starts at a random page
(selected with uniform probability) and clicks a link at random to go to another page, and so on. Rather
than getting stuck on a page that has no outgoing links, the surfer picks a new page at random. Thus, the
PageRank value of a page is an estimate of the probability that the random surfer ends on that page.

It is easy to see that the initial PageRank values for the nodes in the graph sum to one, and constitute a
uniform probability distribution over the nodes. After each iteration, we distribute the "probability mass"
from a node to all of its outgoing nodes. No mass is lost in this process.

In subsequent iterations, we assign a new value to a node based on the following weighted sum:
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Since the values of A sum to one across all nodes, and the values of B sum to one across all nodes, their
weighted sum does as well.

However, there is just one problem; if the graph contains one or more sink nodes, corresponding to pages
with no outgoing links, this mass is lost to the system. It does not stay at the present node. (Why not?) So
in order to be a well-behaved probability distribution, and faithfully simulate the behaviour of our random
surfer, we need to add edges from any sink nodes to every other node, before running the algorithm.

The PageRank Algorithm
In the following algorithm, we assume that nodes have a PageRank property called "PR", and we assume
that we can access the incoming (resp. outgoing) nodes of some node using node.incoming() (resp.
node.outgoing()).

N = length(all_the_nodes)
d = 0.85

foreach node:
    node.PR = 1 / N

foreach node:
    if length(node.outgoing()) == 0:
        foreach node2:
            add_edge(node, node2)

repeat:
    foreach node:
        total = 0
        foreach incoming in node.incoming():
            total += incoming.PR / length(incoming.outgoing())
        node.PR = (1 - d) / N + d * total
until convergence has been reached

Implementing PageRank with Edgy
In order to better understand the PageRank algorithm, you might like to try implementing it with Edgy.
You can use the PageRank of a page as the basis for setting the colour or diameter of each node (as you
can see in the Wikipedia entry for PageRank (https://en.wikipedia.org/wiki/PageRank)).

Instead of testing for convergence, we recommend that you perform the outer loop a 10-20 times. You
will be able to observe convergence thanks to your visualisation of the PageRank values, and adjust this
figure.

NB. There is another method for computing PageRank (https://en.wikipedia.org/wiki/PageRank#Algebraic) that uses
linear algebra, starting with the matrix representation of the webgraph.

https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/PageRank#Algebraic
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2.11
Algorithmic Complexity: How fast is my
algorithm?
First steps in algorithm analysis
This video by Alan Dorin is a gentle introduction to algorithm complexity analysis. It explains in simple
terms what is a meaningful notion of runtime for an algorithm.

(https://www.alexandriarepository.org/wp-content/uploads/RunningTime-Wi-Fi-High.mp4)

https://www.alexandriarepository.org/wp-content/uploads/RunningTime-Wi-Fi-High.mp4
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2.12
Recursion

2.12.1 What is recursion? A brief introduction
2.12.2 What is recursion: simple examples
2.12.3 Decrease and Conquer
2.12.4 How to draw a tree
2.12.5 Recursive tree search (video)
2.12.6 Recursive Graph Traversal by DFS
2.12.7 Analysing recursive algorithms
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2.12.1
What is recursion? A brief introduction
This video by Alan Dorin explains the general concept of recursion. It requires you to know about
algorithms and specifically about functions (depending on what you have done before you may know
functions as procedures, methods, or - in Edgy and SNAP - user defined blocks.)

(https://www.alexandriarepository.org/wp-content/uploads/FIT1042-recursion-1-Wi-Fi-High.mp4)

https://www.alexandriarepository.org/wp-content/uploads/FIT1042-recursion-1-Wi-Fi-High.mp4
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2.12.2
What is recursion: simple examples
Consider the following series of diagrams, starting with a triangle on the left. At each step, we make three
copies of the diagram on the left, shrink them down, and arrange the three into a triangle again, ad
infinitum.

You will have experienced recursion if you ever stood between two almost parallel mirrors, or shared your
computer screen during video chat, and seen an infinite series of images of yourself.

Activity: view the following videos.

merge sort (https://www.youtube.com/watch?v=EeQ8pwjQxTM)
triomino tiling (https://www.youtube.com/watch?v=kVq9QJA36tI)

Once you've done this, write down what it means to solve an instance of these problems of size 20 and 21.
Now explain how the solution to the problem of size 2n is related to problems of size 2n-1. Try to write down
a concise explanation of recursion.

Some examples in Edgy
In the Edgy file menu, open the examples folder, and load the Sierpinski example. Try it out for some
small values of the size parameter (up to 5). Inspect the contents of the sierpinski block, and observe the
following structure:

function sierpinski(a, b, c, depth):
    if depth > 1:
        sierpinski(?, ?, ?, depth-1)
        sierpinski(?, ?, ?, depth-1)
        sierpinski(?, ?, ?, depth-1)
    else:
        add edges

Suppose we started by invoking the sierpinski function with depth=3. It would invoke the same function
three times with depth=2. For each of these, it would call sierpinski three times with depth=1 (a total of
9), and this would finally call sierpinski three times with depth=0, which would add the edges.

You might like to add a "wait 1 secs" block to the top of the definition of the sierpinski block, and watch
the Sierpinski Triangle take shape in stages.

Now load the Towers of Hanoi example, and again try it out for some small values of the size parameter.
Inspect the "Solve Hanoi" block, and observe the following structure:

https://www.youtube.com/watch?v=EeQ8pwjQxTM
https://www.youtube.com/watch?v=kVq9QJA36tI
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function hanoi(n, start, spare, end):
    if n > 1:
        hanoi(n-1, ?, ?, ?)
        move a piece
        hanoi(n-1, ?, ?, ?)
    else:
        move a piece

Compare the two blocks of pseudocode above, to see what they have in common. Review your earlier
written explanation of recursion in light of your new understanding of recursion.

Recursion vs Iteration
Recursion offers a way to perform the same task repeatedly. In this respect, it is similar to iteration.
Consider the case of factorial. Here is the iterative version:

function factorial(n):
    product = 1
    for i = 1 to n
        product = product * i
    return product

Let's use our evolving schema for a recursive function (see the previous section), to write a template for
the recursive factorial function:

function factorial(n):
    if n > 1:
        do some operations involving factorial(n-1)
    else:
        handle the case where n=1

Flesh this out into a complete definition of factorial, and satisfy yourself that it is correct. Now study the
iterative and recursive versions. Are both of these "effective methods expressed as a finite list of well-
defined instructions" for calculating factorial?

Infinite Recursion
Looking back at all the examples of recursion we have seen, observe that there is always a depth bound.
Our function has a parameter, and this is reduced by one for the recursive call(s):

function f(n, ?, ?):
    if n > 1:
        do some operations involving f(n-1, ?, ?)
    else:
        handle the case where n=1

In most programming languages, it is possible to get an error "maximum recursion depth exceeded". For
example, this happens in Python after 1000 recursive calls:

&amp;gt;&amp;gt;&amp;gt; def factorial(n):
... &amp;nbsp; &amp;nbsp; if n == 1:
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... &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; return 1

... &amp;nbsp; &amp;nbsp; else:

... &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; return n * factorial(n-1)

...
&amp;gt;&amp;gt;&amp;gt; factorial(100)
93326215443944152681699238856266700490715968264381621468592963895217599993229915
608941463976156518286253697920827223758251185210916864000000000000000000000000
&amp;gt;&amp;gt;&amp;gt; factorial(1000)
...
RuntimeError: maximum recursion depth exceeded in comparison

(This is an arbitrary limit, set by the programming language, to help programmers avoid errors with run-
away recursion. It is possible to raise this limit, but ultimately, we will run out of computer memory. In
such cases, it is sometimes necessary to translate a recursive function into an iterative version.)

This depth-bounded recursion is different to the infinite recursion you experience when standing between
a pair of (almost) parallel mirrors. However, both kinds are still known as recursion.
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2.12.3
Decrease and Conquer
We just saw a simple example of the recursive template:

function factorial(n):
    if n > 1:
        do some operations involving factorial(n-1)
    else:
        handle the case where n=1

Let's consider a particular instance, for 6!, and expand out the steps of the computation:

factorial(6)
-> 6 * factorial(5)
       -> 5 * factorial(4)
              -> 4 * factorial(3)
                     -> 3 * factorial(2)
                            -> 2 * factorial(1)
                                   -> 1
                            -> 2
                     -> 6
              -> 24
       -> 120
-> 720

Notice how our method for computing the factorial of n involves reducing the task to a slightly smaller
task of computing the factorial of n-1. This is a recognised algorithm design strategy called Decrease-and-
Conquer. The most famous example of this strategy is binary search.

Binary Search
Suppose you want to look up a word in a printed dictionary. Instead of starting at page 1, you would be
more likely to dive into the middle somewhere. So if you were looking up synecdoche you might first land
on a page containing words that start with the letter n. Since s comes after n, you would dive into the
middle of the second half of the dictionary, and so on. Let's formalise the process using pseudocode:

function binary_search(word, start, end):
    if word is found at the start position:
        access the definition
    else if end < start:
        report word not found
    else:
        mid = start + (end - start) / 2
        if word &amp;amp;amp;amp;amp;lt; the word found at the start position:
            binary_search(word, start, mid-1)
        else:
            binary_search(word, mid, end)
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Suppose our dictionary contained 10,000 entries. Then we might go through the following steps:

binary_search("synecdoche", 1, 10000)
-> binary_search("synecdoche", 5000, 10000)
   -> binary_search("synecdoche", 7500, 10000)
      -> binary_search("synecdoche", 7500, 8749)
         -> ...

See how each step of the process results in a smaller instance of the problem?

Decrease-and-Conquer is similar to it's more famous cousin Divide-and-Conquer (to be covered later).
Both involve solving a problem through solving smaller instances of the same problem. However, for
Decrease-and-Conquer we only create a single instance of the smaller problem. It could be half the size of
the original problem (as in binary search) or one less than the size of the original problem (as in factorial
above).

Topological Sort
TO BE WRITTEN

Tail Recursion (extension)
There is a special case of recursion, known as tail recursion, which is another example of the Decrease-
and-Conquer design strategy. For details, please see the extension materials in the Appendix.
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2.12.4
How to draw a tree

Trees and recursion
Trees offer us an easy way to understand recursion. Consider the following trees.

Depth = 1 Depth = 2 Depth = 3

Can you think of an iterative method for generating these trees? Try to do this on your own before
consulting the solution below. When you're ready, swap your work with a partner and see if you are both
convinced that it is correct.

Here's a possible solution. Why is it called iterative? What do you think about the efficiency and
readability of this solution?

depth = 3
root = new_node()
while depth > 0:
    initialise leaves to the empty list
    foreach node:
        if node has no children:
            add it to the list of leaf nodes
    foreach leaf node:
        create two new nodes
        link them to the leaf node
    depth = depth - 1

Consider the above tree diagrams again. Notice that a tree of depth d contains two trees of depth d-1.
Let's look more closely at the depth 2 tree, and identify the two depth 1 subtrees:

Subtree 1 Subtree 2 (https://www.alexandriarepository.org/wp-content/uploads/20150416145954/tree_draw_2c.png)
Not a subtree

Note that the green nodes 0, 1, 2 in the third tree above do not form a subtree of this tree, since nodes 1

https://www.alexandriarepository.org/wp-content/uploads/20150416145954/tree_draw_2c.png


2.12.4 How to draw a tree

152

and 2 are not leaf nodes.

Generating trees recursively
Now we are ready to try to generate trees recursively. The recursive insight is that to draw a tree of depth
d, we need to draw two trees of depth d-1, and link them up somehow.

Without any further thought than this, we can apply our general purpose recursion schema to write down
a template for a draw_tree function as follows.

function draw_tree(node, depth):
    if depth > 0:
        one or more operations involving draw_tree(?, depth-1)
    else:
        what to do when depth=0, if anything

Now it's up to you to work out how to fill this out into a complete algorithm. Start by asking yourself how
many times you need to call draw_tree(). It's going to be called on a specific node (its first parameter).
Where will that node come from? How will you join everything up.

What do you have to do when drawing a tree of depth 0, if you've been given the root node for that tree?

Note that there will need to be an outer program that calls this function, as follows:

new_digraph()
root = new_node()
depth = 3
draw_tree(root, depth)

Generalising for trees of arbitrary degree
The above trees have all been binary.

The final step is to lift this restriction, to generate trees of arbitrary degree > 0. Modify the above
algorithm accordingly.

Finally, you might like to implement your algorithm using Edgy, and compare your work with the built-in
block:

Depth-bounded recursion
Notice that we have used the depth parameter to limit how much recursion we do. This was also done in
the code for generating Sierpinski Triangles. Why is this necessary?
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2.12.5
Recursive tree search (video)
This video by Alan Dorin explains how to apply recursion to search in a tree.

(https://www.alexandriarepository.org/wp-content/uploads/FIT1042-recursion-2-tree-dfs-Wi-Fi-High.mp4)

https://www.alexandriarepository.org/wp-content/uploads/FIT1042-recursion-2-tree-dfs-Wi-Fi-High.mp4
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2.12.6
Recursive Graph Traversal by DFS
We're going to return the problem of finding a path between two nodes in a graph. In previous modules
we looked at two algorithms to solve this problem: breadth-first-search and depth-first search. It turns out
that we can write a particularly elegant version of depth-first search (DFS) using recursion which can then
be easily extended to yield the nodes that form the actual path.

Solving a Maze using Recursion
So, let's look at the problem of finding a path through a maze. Imagine we want to find a path between
the "start" and "end" cells of the maze shown below, where the white cells are part of the path and black
ones are blocked with an obstacle.

We can represent this maze as a graph, where each node corresponds to a cell in the maze, and the
edges correspond to paths between these points (i.e. where there is no obstacle between cells).

We can simplify the graph representation above, to represent only the choice points or ends of paths in
the maze. This gives the graph below:
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The Depth-First-Search Algorithm
Now consider the problem of finding a path between the "start" and "end" nodes in the graph above. We
have see that we can use a graph traversal algorithm to search our graph starting from the "start" node
until we either reach the "end" node or fail to find a path to it. We're going to use the DFS (depth-first-
search) algorithm that we discussed previously, but this time we're going to write a recursive version of
this algorithm.

Writing the Algorithm using Recursion
So, what might a recursive version of the DFS algorithm look like? Can you use the recursion schema from
the previous module to write a template for the algorithm? The function will need to be given a start node
and an end node, and will need to call itself recursively.

A First Attempt
The recursive DFS algorithm will start at the "start" node, then check one of its neighbours, n, to see if it
this node is the "end" node. If it is not, then we repeat the DFS algorithm to check whether a path exists
between node n and the "end" node. Where a path ends without reaching the "end" node, the algorithm
backs up to the previous node in the path and checks another neighbour instead.

In our example maze, we first choose a neighbour of the start node (coloured yellow as in the graph
below). Then we check recursively using DFS if there is a path from this neighbour to the end node.

If a node is the end of a path, we backtrack to the previous node and check for a path from a different
neighbour, and so on.
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When we have checked all the neighbours of a node, we back up to the previous node, to check its
neighbours.

Let's use our recursion schema from the previous module, and write down a template for our recursive
depth-first-search function:

function depth_first_search(start_node, end_node):
    if (start_node != end_node):
        do depth_first_search on neighbours of start_node that haven't already
been visited
            if a path is found:
                return true
    else:
        return true
    return false

Now we have defined the basic structure of our algorithm. First, a recursive call, if we have not found the
"end" node yet. And then, a termination case (or base case) that returns "true" when we have reached
the "end" node. The algorithm will also terminate and return "false", if the "end" node has not been found
and there are no more new paths to search.

Refining the Algorithm
However, it is also necessary to keep track of which nodes have already been visited in order to avoid:

re-checking the previous node in the path (which is a neighbour of the current node in an
undirected graph).
checking neighbouring nodes repeatedly where a graph has a cycle of connected nodes. For
example, in the graph below, the final white node in the (triangle-shaped) cycle, will be checked
only once, despite being the neighbour to two yellow (visited) nodes. By marking nodes that have
already been visited (e.g. using colour as in the graphs below) you can avoid checking the same
node repeatedly.

Refine the pseudo-code above to give a complete definition of the DFS algorithm. Note that you will need
to mark the nodes once they have been visited, in order to avoid repeatedly following the same paths
through the maze. You will also need to check whether a node has been visited before searching for a
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path from it to the "end" node.

A Recursive DFS Algorithm
Flesh out the pseudo-code above into a complete definition of the DFS algorithm.

Satisfy yourself that it is correct by working through your algorithm using the example graph. You might
like to compare it with the iterative version of DFS from previous modules.

Once you have done this, modify your algorithm to colour "visited" nodes and nodes that form part of the
final path different colours. For example, we could mark visited nodes yellow, and nodes on the final path
to green. To do this, mark the nodes that are currently being visited by the DFS algorithm as green. Then,
once the algorithm has finished visiting them, and if it has not found a path, mark them yellow.

Getting the Path
To make our search for the path from "start_node" to "end_node" useful, can you modify your algorithm
to produce the actual path, i.e. the sequence of nodes we have to take to get from "start_node" to
"end_node"? Here are some hints:-

use a local variable to build up a list of the nodes on the path.
instead of returning true or false, your algorithm will need to return a list of nodes on the path.
you can add nodes to the path list each time a recursive call returns successfully.

You will notice that the DFS algorithm does not necessarily return the shortest path between two nodes.
Another algorithm would be required for this - do you know which one?
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2.12.7
Analysing recursive algorithms
Once we've written a recursive algorithm, how can we work out how efficient it is? When deciding
between various algorithms for solving a particular problem, it is useful to be able to compare the
performance of different solutions. For small problems, efficiency usually doesn't matter much. However,
it's important to know what happens as the size of the problem increases. In this module we will see how
to analyse the efficiency of recursive algorithms.

Recall from module 3.9 that we can analyse the time complexity of an algorithm by counting the number
of times it performs some basic operation. The basic operation differs, depending on the algorithm, it
might be multiplication, appending to a list, or creating a node. For iterative algorithms, we can look at
the number of times the loop (or loops) are executed, and work out how many times the basic operation
is performed.

for i = 1 to n:
    for j = 1 to n:
         perform some operation

In the above case, simple inspection tells us that the operation will be performed n2 times. This approach
won't work for recursive algorithms. (Why not?)

Example: Generating a binary tree
Consider the algorithm for generating a binary tree of a specified depth, discussed in module 3.10.3:

function draw_tree(root_node, depth):
    if depth > 0:
        left_child = new_node()
        create an edge from root_node to left_child
        right_child = new_node()
        create an edge from root_node to right_child
        draw_tree(left_child, depth-1)
        draw_tree(right_child, depth-1)

root_node = new_node()
draw_tree(root_node, 4)

We'd like to modify this algorithm to count the number of "steps" that it takes to generate the binary tree.
What's the basic operation? Let's opt for node creation, and add a counter to keep track of the number of
times this operation is performed:

function draw_tree(root_node, depth):
    if depth > 0:
        left_child = new_node()
        create an edge from root_node to left_child
        step_counter = step_counter + 1
        right_child = new_node()
        create an edge from root_node to right_child
        step_counter = step_counter + 1
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        draw_tree(left_child, depth-1)
        draw_tree(right_child, depth-1)

set step_counter = 0
root_node = new_node()
step_counter = step_counter + 1
draw_tree(root_node, 4)

Now, let's see what happens to the value of the step counter:

depth=0: we create a root node (1 step)
depth=1: we create the root node (1 step), then add left and right child nodes to our tree (2 more
steps)
depth=2: we create the root node (1 step), and then add left and right child nodes to our tree (2
more steps), then call draw_tree for each of these 2 child nodes resulting in 4 further leaf nodes (2
x 2 more steps)
depth=3: we create the tree of depth 2 as above, and then add 2 child nodes for each of the 4 leaf
nodes

Let's tabulate these values:

depth 0:     1 step
depth 1:     1+2 = 3 steps
depth 2:     1+2(1+2) = 7 steps
depth 3:     1+2(1+2(1+2))) = 15 steps

Can you see the pattern? What is the relationship between the depth of the tree and the number of steps
that the algorithm executes? Is there way to express the number of steps as a function of the depth?

Example: Summing Numbers
Now, let's look at the algorithm for summing the numbers from 1 to n (cf 3.10.6). Here's the iterative
version:

function sum_iter(n):
    set total = 0
    for i = 1 to n:
       total = total + i
    return total

You can see that it loops through values of i, from it's initial value of 1 to it's final value of n. Can you
analyse its time complexity by counting how many times the loop is executed? Remember, time
complexity is often expressed relative to the size of the input.

Now, let's look at the corresponding tail-recursive version of this function, with an added variable
"step_counter", to count the number of times that the basic operation (addition) is performed.

set step_count = 0

function sum_tail_rec(n, running_total):
    if n != 0:
        step_count = step_count + 1
        return sum_tail_rec(n - 1, running_total + n)
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    else:
        return running_total

sum_tail_rec(20, 0)

Can you see the relationship between the value of the input n and step_count? Work through some
examples with different input values, and see the number of steps that the algorithm takes.

If we run this algorithm with a number of different inputs, we get the following results:

How can we express the relationship between n and step_count? Well, we can say that the time
complexity of 'sum_tail_rec' is directly proportional to the size of the input n, or, that our function
performs n basic operations.

Deciding what to count
You might have noticed that we made some arbitrary choices in what to count in the recursive examples
above. When creating the binary tree, we counted the number of node creations (not edge creations),
which was one less. And for the addition function, we counted the addition of each new value to the
running total, and not the decrementing of n.

If we had included this extra work in our calculations, the total value of the counts would have been
increased by a factor of 2. (You might like to check this for yourself.) However, when measuring the
complexity of an algorithm, we are not concerned with constant factors. We just want to identify the
growth rate, as something like n, n2, 2n or whatever, since this rate is more significant than the constant
factor, as n gets large.

Experimenting in Edgy
Now that we've seen how to calculate the time complexity for recursive functions, let's do some more
systematic experiments with different input values. We're going to look at the Sierpinski Triangle example
in Edgy. In the Edgy file menu, open the examples folder, and load the Sierpinski example.

Your task is to identify the "basic operation", and then add a step_counter variable to count the number of
times the basic operation is performed.

This time, we're not going to inspect the code in any detail. Instead, we're going to treat this function as a
black box and simply run it with different input values to log the number of steps that it takes for each.
We want to systematically study the behaviour of the function as the input size changes. Create a block of
code in Edgy based on the pseudocode below to run Sierpinski with values from 1 to 5, and calculate the
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number of steps it takes to run.

results = []
for size = 1 .. 5:
    step_counter = 0
    sierpinski(new_node(), new_node(), new_node(), size)
    results.append(step_counter)

Run your block and examine the values in the 'results' list. Can you see a relationship between the input
size and the number of basic operations that the Sierpinski function performs? Observe the rate of growth
of the 'step_count' as the input size gets larger.

Using your programming skills, you have written code to collate data about the performance of other
code. This can help you to analyse algorithms and understand their performance.

The Effect of Input
Some algorithms do a different amount of work depending on the order or structure of their input. For
these algorithms, the time complexity is not only affected by the size of the input, but also other
conditions under which the algorithm is run. For example, the performance of the DFS algorithm for
finding a path between a start and an end point in a given maze, will depend on which start node we have
chosen, the structure of our maze (or graph) and which end node we are trying to reach.

If we search the children of a node from left to right, then an end node that is left-most neighbour of the
start node will be found immediately.

In contrast, an end node that is towards the bottom of a branch will take much longer to find using the
same DFS algorithm.
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For algorithms such as DFS, in which the structure of the input or the particular problem affect the time to
solve it, we can talk about best-case performance, worst-case performance and average-case
performance.

For the DFS algorithm in a maze, which we can represent as a graph, the best case would be when the
end node is the first neighbour of the start node. In this case it only requires 1 recursive step to reach the
end node, so its time complexity is constant time (1 step). The worst case for DFS in a maze is if the end
node is at the end of the last path to be searched. So, the worst case time complexity is proportional to
the size of the number of nodes in the graph, or n.

What do these two cases tell us about the performance of the DFS algorithm? It seems that neither is very
representative of the maze problem, so we'd really like to work out the average case time performance.
How could we do this? Well, one way would be to run lots of trials of the algorithm, just as we did above,
to see the effect of the size of the input. Our trials , however, would need to run our algorithm on
representative maze structures and start and end points.
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2.13
Best First Search

Heuristic Search
When solving real-world problems, we often rely on simple "rules of thumb". For example, if we needed to
cross town on foot and didn't have a map, we would probably be inclined to set off in the general direction
of our goal. In some cases that choice might not be optimal, e.g. we might be in a dead-end street; the
quickest route might involve starting off in the opposite direction.

Consider the game of tic-tac-toe. Do you have any rules of thumb about where to put your X or O pieces?
Obviously, if you can win on the next move, you move accordingly. But what if you can't see a win right
away? And what about the opening move? Try to identify a couple of these rules of thumb before
continuing. You might like to do the same for other board games, like checkers or chess. E.g. in chess it's
good to protect your pieces, rather than leave them undefended, even if they're not in any immediate
danger.

In computer science, such rules of thumb are known as heuristics.

A possible heuristic in tic-tac-toe is to claim the centre square if possible. In terms of a game tree, where
each node represents a configuration of the board, that means favouring the highlighted nodes:

If the center square is taken, we might favour corner squares over side squares, other things being equal.
In this way, whatever node we might be at in our game tree, we have some way to prioritise the available
moves.

Now, if we are writing a program to analyse all options and find the best one, there is no prospect for
saving time. We'll need to visit the entire subtree. (Why?) The heuristic is only useful if we think we can
make a good decision without exhaustive search, without visiting the entire tree. Our goal is to improve
the average speed of our algorithm.

An example: Searching in a Maze
Imagine that you are wandering around a hedge maze, trying to find the way out. By standing on your
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toes, you're able to look over the walls and see a flag that marks the exit. Now, suppose you come to an
intersection in the maze, and one of the options will take you in the direction of the flag. That seems to be
a good option to explore first, even though it's not guaranteed to be the right one. If we applied this
heuristic to our previous maze example, we would make fewer wrong turns and find the solution much
more quickly, as shown in the highlighted graphs below (yellow is used to mark visited nodes).

We can write down the heuristic as follows (shown in green):

function best_first_search(start_node, end_node):
    if (start_node != end_node):
        work out the compass direction
            from start_node to end_node
        sort the unvisited neighbours of start_node
            for similarity with that direction
        foreach unvisited neighbour:
            if best_first_search(neighbour, end_node):
                return true
    else:
        return true
    return false

Examine the above pseudocode carefully. If the best choice at a given node turns out to be wrong, will the
best-first search algorithm still find a solution? In other words, is best-first search guaranteed to find a
solution if one exists?

How much time does this save on average? Answering this question would require some experimentation,
in which we run a series of trials (see the next section).

Implement best-first search for the maze problem
Step 1: Load the generate maze block
(https://www.alexandriarepository.org/wp-content/uploads/20150510123424/generate-maze.xml) into Edgy. You can find it at the
bottom of the network tab. Set the layout to manual before running this block. It will generate m*n mazes
like the following, where the available paths are black (here m=12 and n=6).

https://www.alexandriarepository.org/wp-content/uploads/20150510123424/generate-maze.xml
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(Can you figure out how the maze generation block works? You might like to read about the origin of this
algorithm (http://en.wikipedia.org/wiki/Maze_generation_algorithm#Randomized_Prim.27s_algorithm).)

Step 2: Specify the start and end nodes. This could be as simple as 1,1 and m,n.

Step 3: Apply depth-first search to this graph, marking visited nodes, until the end is found. Then count
how many nodes were visited. This number is the result of the run.

Step 4: Apply best-first search to this graph, again marking the visited nodes, and counting how many
nodes were visited.

Step 5: Run a series of trials, and work out the average-case complexity for each algorithm when applied
to an n*n maze.

Note: for step 4, you'll need to work out how to score any node, in terms of how promising it is as part of
the path to the end node. One simple way would be to calculate the Hamming distance from the node to
the end node: hamming(a, b) = abs(a.x-b.x) + abs(a.y, b.y). Then you will need to order the candidate
nodes according to their score.

Designing the heuristic
An important feature of a heuristic is that it is quick to calculate. Typically, a heuristic would only use
locally-available information.

For example, the Hamming distance score was calculated based only on the child nodes of the current
node and their distance from the end node. In theory, we could have performed complete look-ahead,
searching the whole maze to work out the correct node to pick at any stage. But this would be a strange
thing to do: we effectively solve the maze in order to take the first move, then solve it again to take the
next move, and so on. The problem with such a heuristic is that it repeatedly visits the whole graph. If
we're trying to save effort and not search the whole graph in order to find the best path, there's no sense
in visiting the whole graph in order to make every single move!

Best first vs greedy
Best-first search is related to greedy search. Recall Prim's algorithm, and how, at each step, it extends a
partial minimal spanning tree by linking the nearest unconnected node, successively growing a partial
solution into a complete solution. This is a greedy design pattern, which happens to find the optimal

http://en.wikipedia.org/wiki/Maze_generation_algorithm#Randomized_Prim.27s_algorithm
http://en.wikipedia.org/wiki/Maze_generation_algorithm#Randomized_Prim.27s_algorithm
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solution in the case of Prim's algorithm.

Imagine we applied the greedy strategy to solving the maze. This means that we would always commit to
taking the move that brings us closer to the end. We would never be able to back up and try other
branches.

Best-first search is different. It is guided by our greedy heuristic, but it can always back out and consider
other alternatives. Eventually, it will consider all possibilities, just as depth-first and breadth-first search
do.

Example: Route Finding in Romania
Imagine you need to get from point A to point B in a road network. Just for fun, suppose you were in
Romania, and wanted to travel from Arad to Bucharest. You have a map showing which cities have roads
connecting them and the distances of these roads, as shown below.

Note that this is a map, not just a graph, given that the cities are plotted in a way that corresponds to
their geographical location.

Think for a moment how you would go about the task of getting from Arad to Bucharest. You're currently
at Arad. Do you dig out your implementation of Dijkstra's algorithm and transcribe the map into a graph?
No, your intuition is probably to consider the physical layout, and go to a neighbouring city that is closer
to Bucharest, or in the same direction as Bucharest. How can we exploit ideas like this?

Now, observe that the map isn't perfectly to scale: there's a 99km edge (Sibiu-Faragas) that is more than
25% longer than the nearby 80km edge (Sibiu-Rimnicu Vilcea). So perhaps the cities are not accurately
mapped, and we might not make a good choice as we set out from Arad.

Let's think about this another way. Suppose you could redraw the above map so that edges are to scale,
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but so that the cities are moved around. For instance we could rotate the Arad-Oradea-Sibiu triangle 90°
anti-clockwise, and stretch Lugoj and Mehadia out westwards, while making sure that the Arad-Timisoara
edge pointed directly towards Bucharest. By playing around with the layout like this, a human reader of
our map might make different choices about the first step to take from Arad. All of this serves to
demonstrate that there is more going on in the above diagram than just a collection of nodes and edges.

Getting started
How would you go about finding a route? If you were to choose which road to take from Arad, how would
you decide which one? Dijkstra's algorithm feels like a fair amount of work. What about the brute-force
approach to finding the optimal path, by looking at every possible route and calculating the shortest one?
Let's try to formulate a heuristic, basing our decision on locally-available information. Starting at Arad,
there are three roads we could possibly take:

How could we choose between them?

One possible heuristic is to choose the neighbouring city that is closest to Bucharest. That is, we could
estimate the distance of the shortest path to Bucharest, using the straight-line distance from each of
these cities to Bucharest. This would be possible if we had a map that is to scale, allowing us to measure
the straight-line distance between each of these cities and Bucharest. Let's assume we have such a map,
and the straight-line distances are as follows:
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Below are the steps that an algorithm that uses the shortest straight-line distance heuristic would take.
From Arad, we choose to go to Sibiu, because Sibiu is closer to Bucharest than Timisoara or Zerind. The
next city chosen would be Fagaras, for the same reason, and then we reach Bucharest.

 

For this example, our heuristic has taken a route straight to Bucharest, without ever choosing a node that
is not on a route to Bucharest.
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However, it is possible that our heuristic might choose a route that does not actually lead to our target
city. For example, if the road from Arad to Sibui went no further, our heuristic would still chose this road,
as it takes us closest to Bucharest, but from there we would have to backtrack. In this case, the heuristic
would have caused us to expand an unnecessary node.

Does our algorithm find the shortest path from Arad to Bucharest? 1

It is also worth noting that our algorithm does not find the "shortest" route from Arad to Bucharest. The
route it finds, is 450km long, but in fact, the route from Arad, via Sibiu, Rimnicu Vilcea and Pitesti is
shorter at 418km. Another algorithm would be required for this - do you know which one?

We can write down the algorithm for finding a path from Arad to Bucharest as follows:

function find_route(start_node, goal_node):
    if start_node != goal_node:
        mark start_node visited
        sort the unvisited neighbours of start_node by distance to goal_node
(closest first)
        for each unvisited neighbour of start_node:
            if find_route(neighbour, goal_node):
                return true
    else:
        return true
    return false

Why does the algorithm need to mark nodes that have been visited already?

Can you flesh out this pseudocode to create an program in Edgy? Mark the successful route in a different
colour. Download the attached file below (romania_route_finding), containing a graph of the cities and
roads between them, corresponding to the map above. Each node in the graph also has an attribute "kms
to Bucharest", with the straight-line distance from this city node to Bucharest. You can then right click on
the stage in the Edgy window and select "import from file" to import the graph into your copy of Edgy.

romania_route_finding (https://www.alexandriarepository.org/wp-content/uploads/20150510032137/romania_route_finding.txt)

Example: The 8 Puzzle
Now, let's look at a puzzle that consists of a 3×3 board of square tiles with one tile missing. The tiles are
numbered from 1 to 8. They can slide against one another, and a tile can move into the empty space if it
is horizontally or vertically adjacent to it (i.e. not diagonally adjacent). The aim of the puzzle is to place
the tiles in numbered order. This puzzle is known as the 8 puzzle, because it consists of 8 tiles and one
empty square inside a 9-square frame.

Here's an example, in which the tiles are unordered:-

https://www.alexandriarepository.org/wp-content/uploads/20150510032137/romania_route_finding.txt
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And we aim to reach a solution, in which the numbers are ordered correctly, like this:-

If we create a graph representing the 8 puzzle game, we can represent each configuration of tiles as a
node in a graph. An edge between two nodes, represents that it is possible to move between two
configurations by sliding a single tile. Here's an example of some possible moves to and from the
unordered tile configuration above:-

Imagine we want to generate a graph to represent every possible configuration of tiles (using nodes), and
the possible moves between them (using edges). What might this graph look like? Well, it wouldn't be a
tree, it would contain cycles and the edges would be undirected. Additionally, there are 9! = 362880
possible board configurations, so it would contain a huge number of nodes. This graph would be very hard
to generate!

Instead, we want to consider how we can generate the graph as we go about solving the 8 puzzle. We can
use a best first heuristic to save generating too many new nodes and generate the nodes that are most
likely to lead to a solution. But what sort of heuristic could we use? Can you think of a rule of thumb that
we can use to judge which of the possible next moves might be best?

Well, we could count the number of tiles that are in the wrong position in each of the possible next
moves. Then, we could choose our our next move to be the one with most tiles in the correct position.
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Another heuristic we could use is to calculate the sum of the taxicab (or city-block) distances between
each tile and its position in the goal configuration, for each of the possible next moves. The taxicab
distance is the the distance between two points located on a grid, where the only path allowed is a
combination of vertical and horizontal lines. So, the taxicab distance, describes the number of vertical and
horizontal moves, that the tile must make to get to its final position.

We can write down an algorithm for solving the the 8 puzzle as follows:-

function eight_puzzle(configuration):
    if not solved:
        identify the possible moves
        create the nodes for these moves
        apply the heuristic to each of the unvisited nodes
        sort the unvisited nodes according to the heuristic
    foreach move in the sorted list of possible moves:
        eight_puzzle(move)

But, how will we know which nodes have already been visited? We need some way of marking them
visited to avoid re-visiting them and repeating work that we have already done. Can you refine the above
algorithm (in pseudocode) to mark 'visited' nodes? You might like to satisfy yourself that it is correct by
working through your algorithm using a few moves from an example 8 puzzle.

Once you have done this, modify your algorithm to colour 'visited' nodes and nodes that form part of the
final solution different colours. For example, we could mark visited nodes yellow, and solution nodes
green. To do this, mark the nodes that are currently being visited by the eight-puzzle algorithm as green.
Then, once the algorithm has finished visiting them, and if it has not found a solution, mark them yellow.

1 No. The route it finds is 450km long, but the route via Sibiu, Rimnicu Vilcea and Pitesti is shorter at 418km. Best first search
is a heuristic approach which is not guaranteed to find the best solution.
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2.14
Applied Algorithms (DRAFT)

Justifying a choice of data type
When choosing a data type, we need to consider the information that needs to be represented, and how it
will be accessed and possibly modified.

For example, in the module on graph traversal, we saw several versions of the algorithm, using lists,
queues, and stacks. The BFS algorithm needed to add nodes to one end of a list, and remove them from
the other end. In contrast, the DFS algorithm needed to add and remove nodes from the same end of the
list. Given these strong restrictions on how we needed to manipulate our data, we could choose the most
restrictive data type.

This has the benefit of helping us not to perform unintended operations. For example, if we chose the
stack, and tried to apply a queue operation to it, there would have been an error, and we would have
been alerted to a problem with our algorithm. No such error would have occurred if we used the more
flexible List ADT.

In other situations we have more flexibility. For instance, suppose we want to maintain a calendar of
people's birthdays. It will need to contain dates and names. How will we represent these? There are many
formats for date, such as a string "25 September", or "25/9", or a pair of integers (25, 9), or an integer
and a string (25, "Sep"), a floating point number 9.25, etc. There are various choices for names as well,
e.g. "Usain Bolt", ("Usain", "Bolt"), ("Bolt", "Usain"). We need to allow for the fact that two people can
share a birthday.

Once we have decided on the data types to use for names and dates, we need to decide how to represent
the correspondence between names and dates. For instance, we could have a list of (name, date) pairs:

[ ("Usain Bolt", "AUG21")), ("Roger Federer", "AUG08"), … ]

Is this a good choice? It depends on how we want to use it. For instance, do we want to be able to look up
the birthday of a particular person, or do we want to be able to find out who has a birthday today? Do we
want to find who has a birthday in the next week so we have time to buy presents? The above list
representation is a poor choice if we want to be able to do look ups by name or date.

To rigorously justify our choice, we write down the proposed representation, then list the operations we
would like to perform and show how they would be carried out using our representation. For example:

Proposed representation: a dictionary mapping month names (represented as strings) to a dictionary
mapping days (represented as integers) to a list of people's names (represented as strings), e.g.

{
  "August" -> {
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    21 -> ["Usain Bolt", "Count Basie", ...],
    8 -> ["Roger Federer", ...],
    ...
  },
  "March" -> {
    14 -> ["Albert Einstein", ...],
    ...
  }
}

Add someone to the birthday calendar, with name n, month m, and date d:1.
if calendar[m][d] does not exist, initialise it to the empty list; append n
to calendar[m][d]
Find all people who have birthday m/d:2.
look up calendar[m][d]
Find all people who have a birthday tomorrow:3.
find today's date, increment it (requires another algorithm, but we have
made it easier by keeping the month and day separate), then apply method 2
above.

Supposing at this point, we realised we wanted to also be able to list today's birthday people in order of
decreasing age. We would need to work out where to add the birth year information. Perhaps it would go
in the above nested dictionary structure, or it could go in a separate dictionary that maps from names to
birth years. Suppose further, it occurs to us that two people can have the same name, how would we deal
with this?

When justifying the choice of data type, it is also good to consider a couple of alternatives, and explain
why these would be inferior. For example, using a floating point number to represent the date makes it
harder to do various operations (work out the next day, convert it to the "day month" format, and so on).
Using an array to hold all days of a month (where day d is stored in position d), makes it a little
cumbersome to initialise our data structure, and more wasteful if we don't have many birthdays to store.
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3.1
Big-O notation: a brief introduction
This video by Alan Dorin introduces the main mathematical formalism that is used to analyse the runtime
complexity of an algorithm, i.e. to determine how much runtime an algorithm needs to solve a problem:
The Big-O notation.

(https://www.alexandriarepository.org/wp-content/uploads/BigOComplexity-Wi-Fi-High.mp4)
It is recommended that you still read the text version (the "primer" in the next module) after watching
this videos as it provides a bit more formal detail.

https://www.alexandriarepository.org/wp-content/uploads/BigOComplexity-Wi-Fi-High.mp4


3.2 Algorithm analysis: a primer

177

 

3.2
Algorithm analysis: a primer
Chapter 1 of Introduction to Algorithms and Data Structures by Michael J. Dinneen, Georgy Gimelfarb and
Mark C. Wilson gives a good first introduction to algorithm analysis and runtime complexity (download link
(https://drive.google.com/file/d/0Bz0_PKKD2CDJRW96R1MzSGVUQjg/edit?usp=sharing)).

Show "AlgorithmAnalysisExcerptDinneen.pdf - Google Drive"
(https://docs.google.com/file/d/0Bz0_PKKD2CDJRW96R1MzSGVUQjg/preview)

https://drive.google.com/file/d/0Bz0_PKKD2CDJRW96R1MzSGVUQjg/edit?usp=sharing
https://docs.google.com/file/d/0Bz0_PKKD2CDJRW96R1MzSGVUQjg/preview
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3.3
Divide and Conquer
a quick introduction

A First Example: Sorting Nuts and Bolts
Imagine yourself as the remote operator of the latest orbital probe. You are in the middle of assembling a
mission-critical piece of equipment with the remote-controlled manipulators. Unfortunately, you have just
spilt the entire set of bolts and nuts for this piece of equipment and you have no way to tell which bolt fits
which nut except for trying.

What is worse, the only information you get back from the remote manipulator when you try to fit a
particular bolt and nut pair is whether the nut fits the bolt, is smaller, or is larger than it. It cannot directly
report an absolute size to you.

You are in a hurry, so you want to sort the set of bolt and the set of nuts into matching pairs in as few
tries as possible. How would you go about this systematically?

In other words, you need to design an algorithm that uses the minimum number of comparisons to sort
two sets N, B into matching pairs, where the only information you get from a comparison is whether x
matches y (x in N, y in B) and where you can assume that each element of N has exactly one matching
element in B.

Naive Solution
The naive way to solve the problem is quite easy to figure out: we simply try all possible combinations of
nuts and bolts. This will certainly allow us to sort the set completely.

Algorithm nuts-and-bolts-naive(N, B)
   input: two lists of integers, representing sizes of nuts and bolts

   foreach x in N
      foreach y in B
         if (x=y) then
            report "x matches y" (* or use the pair x,y *)
      end
   end
end.

But how long will it take us to do this? Let us assume the time a comparison takes is the dominant
contribution to the time required. We can thus take the number of comparisons executed as a proxy for
the runtime of the algorithm (we will make the general notion of runtime more precise later on). In the
form that we have written down the algorithm above it clearly checks all possible pairs. If the size of N
and B is n, we have n^2 possible pairs, so this is the number of comparisons executed.
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A first improvement
Can we do better than that? One might object that the algorithm above proceeds to check other bolts for
a given nut x even after it has found a match for x. This is, of course, completely wasted work. Let us
assume we modified the algorithm so that it does not do that and proceeds to the next nut straight away
(you should do this as an exercise). How many comparisons would we execute now?

Clearly, this depends on the order of nuts and bolts in N and B. What would happen if the two lists N and
B are already sorted? For every nut we would find the matching bolt on the first try and thus we would
only execute n comparisons! Of course, this would be very lucky. It is actually the best case that could
happen. Usually, when we analyse an algorithm, we need to look at the worst case.

What would be the worst case?

If one of the lists is sorted in ascending order and the other one in descending order, we
would need n comparisons to find the first pair, (n-1) comparisons for the second pair, (n-2)
comparisons for the third pair, and so on. Thus, the total number of comparisons is:

While this was certainly an improvement, it has not even made the algorithm twice as fast.
The number of comparisons still grow quadratically with the number of nuts. We need to think
of something more fundamental.

A real improvement
We can make one fundamental observation when we look closely at how the algorithm proceeds: it is
actually not using all the information it can have without doing more work. Each comparison can not only
tell us whether a nut x matches a bolt y, it can also tell us (for free!) if the nut is bigger or larger than the
bolt. We should not throw this information away. For a given nut x it would be easy to split the list of bolts
as a byproduct of finding the matching bolt y into one list BS of those bolts that are smaller than x and
another list BL of those that are larger than x. But how does this help us? if we try to find a bolt for the
next nut, we would still have to look through all of BS and BL, so nothing seems to be gained.

However, if we managed to also split the list of nuts into one list NS of those nuts that are smaller than x
and one list NL of those that are larger than x, our job would become simpler: in all further checks we
would only have to compare nuts in NS with bolts in BS and nuts in NL with bolts in BL. This splitting easily
be done: The matching nut x and bolt y, of course, have the same size. So we can easily split the list of
nuts using the matching bolt y. Note that in the algorithm below both of our list-splitting operations (the
one for the nuts and the one for the bolts) return a matching element as well as the list of smaller and
larger elements. The second split (the one for the nuts) would not really need to do this! Of course, the
returned element z has to be the same as x, since bolt y fits nut x (first split) and in turn nut z fits bolt y.

Algorithm nuts-and-bolts(N, B)
   input: two lists of integers, representing sizes of nuts and bolts

   if (N is not empty) then begin
         let NS, NL, BS, BL be empty lists
         let x be the first nut in N
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         (BS, y, BL) = split(B, x)
         (NS, z, NL) = split(N, y)
         report "z matches y" (* or use the pair (z,y) which is the same as
(x,y) *)
         nuts-and-bolts(NS, BS)
         nuts-and-bolts(NL, BL)
   end
end.

Note that the algorithms proceeds recursively: It splits the sets and calls itself with the smaller subsets as
arguments. The problem alwyas remains unchanged with each recursive call, just the size of the problem
(the number of nuts and bolts) becomes smaller until it is of trivial size. This is the base case, where there
is nothing left to match.

Of course we also need the algorithm for splitting the lists:

Algorithm split(L, x)
   input: a list of integers, representing sizes of nuts or bolts
   output: a triple consisting of
           a lists with all elements of L that are smaller x,
           the element y of x that matches x
           a list with all elements of L that are larger than x

   let LS, LL be two empty lists
   foreach a in L
      if (a<x) then add a to LS
      else if (a>x) then add a to LL
      else let y=a
   end
   return (LS, y, LL)
end.

It seems clear that this must save us some comparisons, but how much exactly? Above we have looked at
the worst case and the best case. We now start by looking at the average case.

When nuts-and-bolts is called the first time, both its argument lists have length n. The lists that the
algorithm passes on to the next recursive call are clearly shorter. On average we could expect that half of
the elements of N belong to NS and half to NL (and accordingly for BS, BL). In this case the next recursive
call would be executed with two lists of length n/2. This, in turn, would execute calls with lists of length
n/4 and so on. Here is a picture of the call tree.
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When do we reach the base case? The length of the list is (n/2^i) for the i-th level of recursive calls (we
count the original call, the root of the call tree, as the first level). Thus, when  the list length
of the recursive call is 1 and we reach the base case with the next call. Thus there are  levels
in the call tree.

How many comparisons do we execute on each level? This is simple: the only comparisons are executed
in split, and split performs a linear scan over the list, thus it executes n comparisons for a list of length n.
We execute two calls to split for lists of equal length. Thus, on each level of the call tree, we have a total
of 2*n comparisons. (Observe that at each level of the call tree, all the different sub-lists NS, NL that N
has been split into together have exactly the same elements as the original N. The same holds for B and
BS, BL).

In summary, we have  levels of calls and n comparisons on each level. The total amount of
comparisons executed is

This is a very significant saving over our previous algorithm. In the diagram below you can see how much
slower the number of comparisons grows as the number of elements n increases.
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Now think about what the worst case and the best case would be and try to work out the complexity. Do
we gain anything in these cases? (Hint: the number of comparisons on each level of the call tree always
stays the same, the crucial question is: how deep will the call tree grow in the different cases).

A Second Example: Finding the Fake Coin
The following video describes a classical logic puzzle: the fake coin problem.

In summary, you are given a set of n gold coins and you are being told that exactly one of them is a fake
coin. The only tool that you have at disposal is a scale. You know that all the coins have the same weight
except for the fake coin. How do you find the fake with the least number of weighings?

The naive solution is again quite obvious: you can pick each coin in turn and compare it to all other coins.
All pairs of coins that you compare must be equal unless they contain a fake. Thus, if you find a difference
in one pair you know that one of two coins is a fake and it is quite easy to determine which one. As you
know there is only one fake, all that is left to do is to compare one the coins to an arbitrary third one. If
there is again a difference this coin is the fake one. If there is none the other coin of the suspicious pair is
the fake. Here is the algorithm:

Algorithm fake-coin-naive(L)
   input: a list of integers, representing the weight of the coins

   foreach x in L
      foreach y in L
         if (not x=y) then begin
            let z be an arbitrary coin in L different from x and y
            if (not x=z) report "x is the fake"
            else report "y is the fake"
         end
      end
   end
end.

As in the previous problem, we are performing comparisons for all possible pairs of coins and thus have
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O(n^2) comparisons. Likewise, as for the previous problem, we could easily save quite a few
comparisons: the way the naive algorithm is written above, it considers each pair twice! However, even if
we did this, we would still need on the order of (n^2)/2=O(n^2) comparisons, so this would not save us
much.

At this point we might have the hunch that the same technique as before would help us to derive a more
efficient algorithm.

To illustrate this, we shall consider a somewhat easier (but not fundamentally different) version of the
problem. The simplification in version is that we have more information: We know that the fake coin is
lighter than a real coin - gold is exceptionally heavy, and the fake is just made from brass.

The idea for a divide-and-conquer solution for this problem is simple: split the set of coins in half, and
compare the total weight of both sets. One of the sets must be lighter. Discard the heavier set - these are
all real coins. (On second thoughts, don't. One should never discard real gold coins. put them in your
piggy bank instead). Continue recursively with the lighter set. The base case clearly is where there is only
a single coin left. This must be the fake coin.

Algorithm fake-coin(L)
   input: a list of integers, representing the weight of the coins

   if (length(L)=1) then return first(L)
   else begin
      if (length(L) is odd) then let a := first element of L
      let L1 := first half of (L without its first element)
      let L2 := second half of (L without its first element)
      if (total-weight(L1)>total-weight(L2)) then
         let b := fake-coin(L2)
      else let b := fake-coin(L1)
      if length(L) is even then return b
      else return min(a,b)
   end
end.

A fully precise description of the algorithm as Edgy code is given further below.

From what we have seen so far, the analysis of the number of comparisons this algorithm
executes is straight forward: the length of the list is halved with each level of recursive calls,
so we have  levels of calls. On each call level we have to perform a single comparison of
the total sum of the sub-lists. (If we want to be more precise, we should actually say 3
comparisons: one of the total weights, one to determine whether the list length is odd, and
one for the min(a,b) operation. We shall disregard this for now, and only count one. This is
justified becuase we are only interested in the fact that this is O(1), not the exact number.

The total number of comparisons executed is thus simply O(log(n)). This is a huge saving over the naive
algorithm!

If you had previously come across the Binary Search Algorithm for finding an element, you will notice how
the call tree of the fake coin algorithm is very similar to that of the binary search method. As a reminder:
Binary search finds an element in a sorted list or another sorted structure. Assume you want to find a
name in a phone book. A linear scan through all names would be very inefficient. Instead you could start
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by comparing a name (somewhere) in the middle of the phone book to the one you are looking for. If the
one you are looking for comes earlier in a lexicographical ordering (alphabetical ordering) you proceed
(recursively!) to look in the first half of the phone book, otherwise you proceed to search in the second
half.

The considerations for the number of comparisons that you need to find the entry (or to ascertain that the
name is not in the book) are exactly the same as for the fake coin algorithm.

We have still not squeezed every last bit out of the fake coin algorithm: Instead of splitting the list into
two halves, we could split it into three parts A, B, C. We could then compare just two of these, say A and
B. If they have the same total weight, C must contain the fake. If they have different ones, the lighter of A
and B must contain the fake. The question for you to work out as an exercise is: What is the number of
comparisons needed with this modification. Does the modification reduce the previous number of
comparisons by more than a constant amount?

A harder version of the problem
The full version of the fake coin problem is more complex. It does not assume that the fake coin is lighter,
it only assumes that the fake coin is the only one with a different weight. It could be heavier. This problem
is left for you as an exercise. A good way to go about solving it is to first contemplate the problem for a
fixed, small number of coins.

(https://www.alexandriarepository.org/wp-content/uploads/FakeCoin-Wi-Fi-High.mp4)

A Third Example: Finding Minimum and Maximum
Let us consider another example. Given a list L of numbers, you have to find the smallest and the largest
number in it. We might be tempted to use the same technique that we have just applied to the other
problems expecting spectecular savings: split the list and treat the sublists recursively.

More concretely, we could split the original list (containing n numbers) in the middle, find the minimum

https://www.alexandriarepository.org/wp-content/uploads/FakeCoin-Wi-Fi-High.mp4
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and maximum of the two sublists, and compare the two candidate minima (maxima, respectively). If n is
odd, we can simply let one of the two lists be one element longer. The algorithm follows:

Algorithm min-and-max(L)
   input: a lists of numbers
   output: a tuple consisting of the minimum and the maximum
           number in the list

   let n=length(L)
   let L1 be a list with the first (n/2) elements of L
   let L2 be a list with the remaining elements of L (* L-L1 *)
   let (min1, max1) = min-and-max(L1)
   let (min2, max2) = min-and-max(L2)
   if (min1<min2) min=min1 else min=min2
   if (max1>max2) max=max2 else max=max1
   return (min, max)
end.

Did the application of the technique save us a lot of comparisons in this case? 1

The call tree looks exactly like the one we have looked at above. Each time we split the list in halves.
Thus, we clearly have  levels of recursive calls again. The comparison which we have to count
happen when we compare the tentative minima and maxima. At level i we have 2i different instances of
the recursive call (remember that we count the first call, the root of the call tree as Level 0). On Level i we
thus have to compare 2i/2=2(i-1) different minima pairs and correspondingly many different maxima pairs,
thus we need 2i comparisons. Summing up the number of comparisons for all levels of the call tree we
arrive at:

This is definitely less than for the previous nuts-and-bolts problem, where we do not have a have a
shrinking number of comparisons per level rather than a constant amount of n comparisons per level.

But did it save us much? The answer is no. The most naive solution for the problem is to simply perform
two linear sweeps over the list: one to find the minimum and one to find the maximum. Each linear sweep
executes (n-1) comparisons, so the naive solution would only have needed the same amount of
comparisons.

Whether or not this design principle is useful clearly depends on a number of factors: How deep the call
tree will grow, how much effort we spend on each level, and also on how costly a naive solutions is.

The General Principle

Let us briefly recap the basic principle of the divide an conquer paradigm:

Divide and Conquer is a recursive approach. The two fundamental steps are to

Divide the problem into a number of subproblems that are in structure identical to the original1.
problem and then solve these recursively.
To combine the solutions of the subproblems into an solution of the whole problem on each level of2.
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recursion.

Divide and Conquer is only useful if the subproblems can be solved independently of each other.
The cost of a divide and conquer algorithm is determined by the depth of the call tree and the
amount of work performed at each level.
If the size of the subproblems is reduced by a constant factor for each recursive level of calls, the
resulting call tree has O(log n) levels, where n is the size of the original problem. This is typically
the case when a problem is split into sub-problems of equal size.
If the subproblem is only reduced by a constant amount (as opposed to factor), the call tree will
have O(n) levels.
If the divide and merge phases are trivial (i.e. only need a constant amount of work that is
independent of the problem size), and the problems are split into subproblems of equal size the
overall runtime of the algorithm will be of order O(log n).
If the divide and merge phases require and amount of work that is linear in the problem size, the
overall runtime of the algorithm will be of order O(n log n).
Divide-and-conquer is often a good approach where a naive solution has to consider all possible
pairs so that its runtime scales quadratically with the size of the problem.
For the typical cases of divide and conquer, there is a beautiful theorem, the Master Theorem
(http://en.wikipedia.org/wiki/Master_theorem) which you can use to derive the overall runtime complexity of
the algorithm.

Edgy Code for the Fake Coin Problem
Below is the edgy code for the fake coin problem as outlined in the algorithms above.

First, we have to define two helper function to split the list and to sum up all weights in a list:

http://en.wikipedia.org/wiki/Master_theorem
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The core functionality is in the block "find-fake-even". this will only work for even list lengths.

We thus need another auxiliary function that takes care of odd list lengths by isolating one element.
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The main function simply sets up a test list and c

1 Somewhat surprisingly not. Here is why…
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3.3.1
Binary Search Trees
A special case of divide and conquer is the case of binary search. If you have ever looked up a word in a
printed dictionary, you will probably have experienced binary search, or something close to it.

This algorithm takes a sorted list of items (here, integers) along with a particular item that we are
searching for. If the item is found, then it returns its position in the list. If it is not found, it returns the
value -1 (an impossible position).

Algorithm binary_search(L, x)
    input: a sorted list of integers
    output: the index of x in L, or -1 if x was not found

    left := 0
    right := len(L) - 1

    while left <= right
        mid := floor( (left + right) / 2 )
        if L[mid] < x
            left = mid + 1
        else if L[mid] > x
            right = mid - 1
        else
            return mid
    return -1

To see how this works, let's step through the algorithm for particular inputs:

L = [7, 16, 29, 52, 85, 136, 184]
x = 85

iter    left    right   mid     L[mid]
1       0       6       3       52
2       4       6       5       136
3       4       4       4       85
4       4       4       4

The algorithm finishes by returning the value 4.

Notice what happens to the size of the task each time through the while loop. Initially, we are dealing with
a list of size n. The item we are seeking could be anywhere in the list. After one iteration, we have
eliminated roughly half of the candidates, and the size of the problem has halved.

Notice also that we could have been lucky, and found the item on the first or second time through the
while loop (how?). But if the item is not in the list at all, then there are no short-cuts. The loop has to run
until left > right.



3.3.1 Binary Search Trees

190



3.4 Complexity of Recursive Algorithms

191

 

3.4
Complexity of Recursive Algorithms
In the last discussion of Divide and Conquer we have seen an informal (or semi-formal) argument for the
improved complexity of Divide and Conquer over naive solutions for some problems.

Hopefully this was convincing, but convincing is, of course, not good enough. We want to know precisely
and with certainty, and the only way to get to this point is to conduct the argument formally.

We have already discussed the complexity of iterative algorithms a fair bit, and you have probably
developed a good intuition for the complexity of such algorithms based on their structure, for example
that an algorithms that uses nested loops typically has (at least) polynomial complexity with a degree
that depends on the depth of nesting (provided they iterate over collections of the same size): linear for a
single loop, quadratic for two nested loops, cubic for three nested loops and so forth.

For recursive algorithms intuition often fails. But we could at least make a start with thinking about the
problem by drawing analogies to how we handled iterative algorithms. To determine the complexity of an
iteration, the central questions to ask are:

how often is the loop executed and1.
how much work is done in each iteration?2.

Equivalent questions can be asked for a recursive algorithm:

how often is the recursive call executed and1.
how much work is done at each level of recursion.2.

In both cases we obtain a series (a summation formula) that describes the complexity.

This was exactly how the informal analysis for the nuts-and-bolts problem proceeded: We drew the call
tree, determined its depth (ie. how often the recursive call is executed), and determined the complexity
of each level of the call tree. The same approach will also form the basis of the formal analysis that we
conduct now.

Deriving a Recurrence Relation for a Recursive algorithm

The central tool to formally derive the complexity of a recursive algorithm are Recurrence relations
(https://en.wikipedia.org/wiki/Recurrence_relation). Recurrence relations are equations that define a sequence
recursively, ie. in terms of itself, and that take integers as arguments. A typical simple example is the
definition of the Fibonacci numbers (https://en.wikipedia.org/wiki/Fibonacci_number):

Effectively, a recurrence relation defines how to fill out a table (or, for a single argument, a list) with the

https://en.wikipedia.org/wiki/Recurrence_relation
https://en.wikipedia.org/wiki/Fibonacci_number
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corresponding values. To fill out entry n lookup entries n-1 and n-2 and add them…

You may now be wondering how to fill the table starting with the lower entries first. What should that
remind you of? 1

The fact that these are recursive definitions makes it easy to define the complexity of a recursive

algorithm. Take  to be the complexity of the recursive algorithm when applied to problems of size

n. For a divide-and-conquer algorithm the principle how we can define  is easy to see:

where  are the sizes of the subproblems generated.

A Worked Example: Nuts-and-Bolts
Recall the algorithm for the nuts-and-bolts problem. To make the discussion a little bit simpler, we will
modify this slightly by stating the base case for list length 1 instead of the empty list. This does not really
change anything.

Algorithm nuts-and-bolts(N, B)
   input: two lists of integers, representing sizes of nuts and bolts

   if (length(N)>0) then begin
         let NS, NL, BS, BL be empty lists (* O(1) *)
         let x be the first nut in N (* O(1) *)
         (BS, y, BL) = split(B, x) (* ? *)
         (NS, x, NL) = split(N, y) (* ? *)
         report "x matches y" (* O(1) *)
         nuts-and-bolts(NS, BS) (* T(?) *)
         nuts-and-bolts(NL, BL) (* T(?) *)
   end
   else begin
         x=first(B) (* O(1) *)
         y=first(N) (* O(1) *)
         report "x matches y" (* O(1) *)
   end
end.

The first question to ask is, what is the independent variable that we should use to measure problem size?
2

next we need to know, what is the complexity of the calls to split? 3
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The next question is a really difficult one. What is the size of the subproblems? To determine this we first
need to know which case we want to look at. It is not easy for us to determine what the best and the
worst case are! To determine what is best and what is worst you first need to understand the solution of
the runtime recurrence relation - This sounds dangerously like circular reasoning.

We shall postpone this and worry about the average case first.

what would be the size of the lists NS, BS (and NL, BL, respectively) on average? 4

Armed with this information it is not difficult to write down a recurrence relation for the runtime of nuts-
and-bolts:

Since we are working with O-notation, we can easily summarize all the O(n) terms:

1 Dynamic Programming
2 As in the other cases, this should be the length of the list, ie. the number of nuts (or bolts) as this clearly determines how

long the algorithm will run.
3 split is a linear algorithm, as it performs a single linear sweep across the list. This is of course only true if adding an

element to the output lists is O(1). You may want to think about the case where this operation itself is linear in the length
of the list to which the element is added. What is the complexity in this case?

4 In the absence of additional knowledge we should assume that on average half of the elements are smaller and half of the
elements are larger than the splitting bolt or nut. So their size would be n/2.
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3.4.1
Solving a Recurrence Relation by Telescoping
Recurrence relations that arise from Divide-and-Conquer, like the one for our example, are relatively easy
to solve in many cases. However, in general solving a recurrence relation can be a very complex (or even
infeasible) task. We will only look at two techniques that are frequently used for applications in algorithm
design:

Telescoping and the
Master Theorem.

For further information you may want to consult Concrete Mathematics by R. Graham, D. Knuth, and O.
Patashnik (Addison Wesley 1994) (https://en.wikipedia.org/wiki/Concrete_Mathematics), one of the most useful books
for computer science maths ever published.

Telescoping sounds like a complex process, but it is actually quite straight forward. We simply start with

the definition of  and repeatedly replace the definition of  into itself until we reach the base
case. With any luck we will discover the general pattern that the expansion follows and solve the equation
in this way.

Let's do this for the nuts-and-bolts runtime equation:

Note how we have already summed up the O(1)and O(n) terms to make life easier. We now telescope by
replacing exactly the same definition (recursively). With

we obtain

Now repeat the process until you see the pattern:

replacing  gives us

This could go on forever, when do we stop? As with all recursions, when we have reached the base case.

When do we reach the base case? 1

You can now see why we have modified the base case slightly!

Let us write the pattern that we are always replacing in a general form:

https://en.wikipedia.org/wiki/Concrete_Mathematics
https://en.wikipedia.org/wiki/Concrete_Mathematics
https://en.wikipedia.org/wiki/Concrete_Mathematics
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We can now write the expansion in a generalized form:

Now observe that the innermost term is simply  (the base case) and that all the

remaining terms have just the form . There are  of these terms.

Thus the sum reduces to

This exactly corresponds to what we derived before informally: Our call tree has  levels and we

perform  work on each level.

This was not really difficult, but somewhat tedious. Luckily, there is a simpler way (that also avoids us
making small errors in the solution!): the Master Theorem.

1 After we have divided the list log(n) times into halves the list length will be 1, so log(n) expansions we arrive at T(1), the
base case.
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3.4.2
The Master Theorem for Divide and Conquer
Levitin version
Luckily, we don't need to perform all the work for telescoping every time we encounter a Divide-and-
Conquer algorithm.

There is a general solution to most runtime recurrence relations that we would derive from a Divide-and-
Conquer algorithm which is known as the Master Theorem (https://en.wikipedia.org/wiki/Master_theorem).

The Master Theorem gives us a general solution to recurrence equations of the form:

All that we have to do is to match a and b to the equations that we are trying to solve.

What are the factors a, b for the nuts-and-bolts problem? 1

Master Theorem

If , the above recurrence relation has the solution:

Note that there are stronger versions of the Master Theorem, but we won't discuss these here, as this is
sufficient for our purposes.

Deriving or proving the master theorem would be significantly beyond the scope of this course, so we
shall simply use it as a (very convenient) tool. But with this tool we can very simply determine the
runtime complexity of many recursive algorithms that are relevant to us. All that we have to do is to
construct the runtime recurrence relation, read off the factors from its definition, and plug these into the
master theorem.

For our nuts-and-bolts problem, the factors are simply 

We thus have Case 2 ( ) and the solution is, as we already know from solving by telescoping

For full details regarding the Master Theorem, see here (https://en.wikipedia.org/wiki/Master_theorem).

https://en.wikipedia.org/wiki/Master_theorem
https://en.wikipedia.org/wiki/Master_theorem
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1 a=2, b=2
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3.4.3
Recursive Complexity: An Example
Partial Sums
Below is a simple example of a recursive algorithm. It computes the partial sums of a list of numbers. The
first partial sum of a list is the sum of the whole list, the second partial sum is the sum of all elements but
the first one, the third partial sum is the sum of all elements but the first two, and so forth. For example,
the partial sums of the list [1, 2, 3, 4, 5] are [15, 14, 12, 9, 5].

Before you continue to read, you may want to construct iterative and recursive versions of algorithms to
compute these partial sums yourself.

The Edgy program below is an implementation of the most straight forward way to compute partial sums.

What is the runtime recurrence relation for this version of the program? 1

What, apart from input size, does you calculation of the runtime complexity depend on? 2

Can you solve this runtime recurrence with the Master Theorem? 3

Can you work out what the runtime complexity of this implementation is? 4

A "minor" variation of the algorithm
Here is a second implementation of partial sums. Comparing it to the first implementation you will notice
that there is hardly any difference; only a single very subtle one: in the new version we were too lazy to
define a local variable to hold the value of the intermediate recursive computation. Instead we are
computing it directly where it is needed in the formula.
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Do you think this will make a major difference for the runtime? Think about this abstractly at first, then
explore it by using the implementation. Start with a very short list (say, 2 or 3 elements) and then
increase the list length step by step: 5 elements, 7 elements, 10, elements, 15 elements…

To do this you may want to use a little helper function so that you don't have to construct your lists
manually.

 

Can you give the runtime recurrence relation for the second implementation? 5

Can you already make an informed guess what the runtime complexity class is? 6

How would you solve this equation? 7

You see how even minor differences can make a massive difference to an algorithm's complexity. So
massive, indeed, that it can change from fast to practically unusable. Careful design and structured
(formal) reasoning about the complexity of an algorithm design can thus be a real life saver!

1 T(1)=1; T(n)=T(n-1)+O(1)
2 All list ADT operations, including in-front-of and all-but-first-of, are assumed to be O(1)
3 No. The recurrence relation does not have a form to which the Master Theorem is applicable: The size of the problem

reduces linearly not geometrically.
4 The recursion is clearly executed n-1 times for a list of size n, i.e. the call tree is linear and of depth O(n). At each level of

the call tree we perform O(1) work under the above assumptions. The total runtime is T(n)=O(n).
5 This time we are generating two calls on each level of the recursion. The runtime recurrence relation thus is

T(n)=2*T(n-1)+O(1); T(1)=1
6 The call tree will be a binary tree with n levels (it branches into two subtree on each level and the problem size reduces

linearly). The number of nodes on each level is thus 2^n (starting with 0 at the root) and the total number of nodes up to
level n is O(2^n). At each node we are performing O(1) work. The total runtime is thus O(2^n).
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7 As before, the Master Theorem does not apply. You have to solve this recurrence relation by telescoping. Another
technique that is always an option is to guess the solution and then to prove it by induction.
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3.5
Dynamic Programming
a quick introduction

A seemingly simple problem
Imagine your task is to write the control program for a new vending machine. While this may at first not
appear as a particularly demanding intellectual exercise, it will turn out to be tricker than expected!

We want to look at one particular sub-task that needs to be solved. This is the algorithm that determines
how to give change. As we would like to keep a minimal amount of coins in the machine, we will need to
develop an algorithm that pays out a given amount in the smallest number of coins possible.

For example, to pay out $7 when the available coin denominations are $1, $2, $5 we should only use two
coins: $7=$5+$2.

In general form, the coin system at hand has n different denominations . We assume that we
have an unlimited supply of each coin type. The problem we have to solve is how to pay out a given
amount C using the minimum number of coins.

A most naive way to approach the problem is to determine the coins to use step by step and to always
use the highest valued coin possible.

Algorithm change(C)
  input: an integer C (the amount to be paid out),
  output: the coins to be used to pay out C
  assumptions:
       the available denominations are d1, ..., dn
       an unlimited number of coins are available
          for each denomination

  let coins be an empty list
  repeat until (C=0) begin
     let temp=0
     foreach d in [d1, ..., dn]
        if (d<=C and d>temp) then let temp := d
     let C := C - temp
     append temp to coins
  end
  return coins
end.

Clearly, this would solve the above example correctly and it determines the coins to be used very
efficiently because there is no search involved.

What type of algorithm is the method suggested above? 1
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Let us investigate whether this algorithm is safe to use.

Does this algorithm work in any possible coin system? 2

The greedy approach will work for almost all monetary system that exist in reality. But how can we make
sure that the algorithm chooses the minimal number of coins for any possible coin system?

A brute force solution
As usual, for some inspiration a naive solution is a good starting point. Obviously, generating all possible
combinations of coins that sum up to C and checking which of these has the smallest number of coins is
guaranteed to solve the problem correctly.

We could implement this algorithm elegantly using recursion. Instead of explicitly generating all sets first,
the recursive algorithm can do this implicitly "on-the-fly". The idea is simply for each denomination to test
whether using it vs not using it at a given step yields the better result.

To simplify the discussion we will only let our algorithm compute how many coins are needed (rather than
explicitly determining which ones have to be used). This does not really change the problem as we still
have to determine implicitly which ones to use, it will simply allow us not to worry about recording the
denominations used. In this way it will allow us to focus on the important design aspects and to write the
relevant aspects of the algorithm more compactly.

Algorithm change(C)
  input: an integer C (the amount to be paid out),
  output: the minimum number of coins needed to pay out C
  assumptions:
       the available denominations are d1, ..., dn
       an unlimited number of coins are available
          for each denomination

  if (C=0) return 0
  else begin
     min = +infinity
     foreach d in [d1, ..., dn] begin
         if (change(C-d)+1 < min) then min = change(C-d)+1
     end
  end
  return min
end.

Note that the algorithm calls itself recursively. For each denomination, it reduces the amount required by
this denomination and computes recursively how many coins are required to change the reduced amount.
It then compares this result to all othr possibilites of taking out another denomination first.

We can easily extract a compact (recursive) formula from this algorithm that computes the minimum
number of coins needed:
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This is elegant, but is it an efficient way to solve the problem? Unfortunately, the answer is no.

To analyze the runtime complexity of this algorithm, what is the relevant variable that measures problem
size? 3

How many possible combinations of denominations must the above algorithm test? 4

To convince yourself of this, consider a coin system that has n different denominations with dmax being the

highest one. To pay out the amount C you will clearly need at least  coins (and most likely
more). Consider just these m coins. As there are n denominations (possible coin types) you already have
nm combinations to consider. And this is just a lower bound.

We can easily see how the problem manifests in the recursive call tree of the algorithm. Consider the tree
below for the example that we started with:
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An efficient solution: Dynamic Programming
We are obviously performing a lot of redundant computations! Many calls, such as change(3) are
evaluated multiple times! To construct a more efficient solution we need to avoid these redundant double
computations. The basic idea is not complicated at all. Consider the multiple calls to change(3). We need
the results of these calls within the computation of change(4), change(5), and so forth… What if we
computed change (3) first and stored the solution so that we do not need to recompute it? This would
clearly avoid the double computations.

The core idea is to compute the nodes of the call tree above bottom-up rather than top-down and to store
intermediate results so that they can be reused without having to recompute them.

What type of data structure would you use to store the intermediate results? 5

We initialize A at all spots where the solution is trivial. These typically correspond to the base cases of the
recursion. All other positions are computed in increasing order, reusing values that have been computed
previously.

Algorithm change-dp(C)
  input: an integer C (the amount to be paid out),
  output: the minimum number of coins needed to pay out C
  assumptions:
       the available denominations are d1, ..., dn
       an unlimited number of coins are available
          for each denomination

  A[0]=0
  for i from 1 to C
     foreach d in [d1, ..., dn] begin
        if (d<C)
          if (1+A[i-d]<A[i]) then A[i] := 1+A[i-d]
     end
  end
  return A[C]
end.

Implementation in Edgy
below is the full implementation of the coin change problem in edgy. It directly mirrors the pseudo-code
given above.
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Runtime complexity of the coin change algorithm
The runtime complexity of the dynamic programming algorithm is easily determined: We have two nested
loops and perform only a constant time computation in the innermost loop body. The outer loops runs
from 1 to C and the inner loop executes once for each of n denominations.

Based on these observations, what is the asymptotic runtime complexity of change-dp? 6

These are massive savings over the runtime of the naive algorithm which was exponential in C!

The general schema

This "bottom-up" computation is an instance of a algorithm design pattern called Dynamic programming.

Dynamic Programming is often useful where we have a straight forward recursive solution to a
problem, but the direct recursive implementation is inefficient because it leads to redundant
computations.
The redundant computations are caused by what is often called "overlapping sub-problems": The
computations that need to be performed to compute the solutions of sub-problems contain
identical parts so that these are replicated in the call tree.
The terminology "overlapping sub-problems" clarifies an important distinction between dynamic
programming and divide-and-conquer. Dynamic programming is often useful where the problem
can only be split into overlapping subproblems. Divide-and-Conquer is usually only useful when the
problem can be split into non-overlapping (independent) sub-problems.
Implementing a dynamic programming solution for a recursive definition essentially amounts to
computing the call tree bottom up in some order that avoids double-computation and storing
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intermediate results for reuse. To define the DP algorithm from a recursive definition two
fundamental decision have to be made:

What is an appropriate storage structure? Typically the answer is a k-dimensional matrix or
array.
What is the appropriate order to traverse (or generate) the entries? This needs to ensure
that all entries have been computed before they are needed in other computations.
A subproblem of the traversal order is the question which results can be determined trivially
and used to initialize the storage structure (typically the base cases of the corresponding
recursion).

In many cases the direct recursive implementation will execute an exponential number of calls.
Dynamic programming usually has polynomial runtime complexity. The basic algorithm structure
typically consists of a number of nested loops. A common form is an algorithm that fills a one
dimensional array step by step and at each step all previously computed elements are considered.
The complexity of such an algorithm is O(n2).
Dynamic programming is often used for problems where we find a solution among a large number
of candidate solutions that is in some sense optimal.

Variation: number of ways to give change for the sum
Let us consider a simple variation of the problem: Instead of computing the minimum number of coins
needed we now want to compute the number of different coin combinations that can be used to pay out
the amount.

The recursive solution for this problem is only a minor variation on the above and likewise very simple to
obtain:

The required change to the algorithm directly mirrors the change in the formula. We leave it as an
exercise for you to rewrite the above algorithm so that it computes the number of ways change can be
given.

Note that if your coin system only has two denominations $1 and $2, the solution is exactly the c-th
Fibonacci number (http://en.wikipedia.org/wiki/Fibonacci_number)!

So the computation of Fibonacci numbers is clearly a candidate for dynamic programming! Here is a
dynamic programming algorithm that computes the Fibonacci numbers up to n.

Algorithm fib-dp(N)
  input: an integer N>0
  output: the N-th Fibonacci number

  F[1]=1
  F[2]=1
  for i from 3 to N
     F[i]=F[i-1]+F[i-2]

http://en.wikipedia.org/wiki/Fibonacci_number
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  end
  return F[N]
end.

It is well known that the closed-form solution for the Fibonacci numbers is

with the Golden Ratio (http://en.wikipedia.org/wiki/Golden_ratio)

This fact can be used as a simple proof that the recursive algorithm has exponential runtime complexity
(executes an exponential number of calls), since the recursive formula does not only describe the number
of ways to pay out the amount, but also the number of recursive calls made ("F(n) requires all the
recursive calls that are needed to execute F(n-1) plus all the recursive calls needed to execute F(n-2)")

Another example: cutting for profit
Let us apply the same technique for a different problem. We want to solve a planning problem for a
company that buys steel rods, cuts them into varying lengths, and resells them again. The question that
arises is how to best cut a rod of a given length n in order to achieve the maximum profit.

The answer is not entirely straight forward because the price for each rod length is set individually, i.e. it
is not a simple per meter price. Otherwise the problem would be rather boring: it clearly would not matter
how to cut!

The company only sells rods in multiples of full meters, and the cost for cutting is negligible so that it
does not need to be taken into account.

You have to write an algorithm that determines the maximum total selling price that can be achieved for
the pieces cut from a rod of length n. Our algorithm is given as input the total length n and the prices pi,
where pi is the price charged for a single piece of length .

To simplify the discussion, we only explicitly compute the maximum profit we can make. Our algorithm
will not output the cutting pattern itself!

As before, a recursive formula for the maximum profit that can be achieved is simple to find. The formula
essentially considers at each recursive call all possible ways of cutting one piece off the rod.

We can again use a one-dimensional matrix or array for the intermediate results, and at index i of the
matrix we will store the maximum profit that we can achieve from a rod of length i. The algorithm uses
two nested loops. The outer loop considers rods of increasing length until we reach the target length, and
the inner loop considers all possible ways of cutting a single segment from the currently considered

http://en.wikipedia.org/wiki/Golden_ratio
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length. If we cut one segment we end with two shorter segments for which we know the maximum profit
already, so these two profits can simply be added up.

Algorithm cutting-dp(L)
  input: an integer L (the rod length),
  output: maximum profit from selling a rod of length L in segments
  assumptions:
       the profits for the lengths of rods that are sold uncut are
       p1, ..., pk and their corresponding lengths are l1, ..., lk
  for i from 0 to L: P[i] := 0
  for i from 1 to k: P[lk] := pk
  for i from 1 to L
     for j from 1 to k begin
        if (lj<i) AND (pj+P[i-lj]>P[i]) then P[i] := pj+P[i-lj]
     end
  return P[L]
end.

Dynamic Programming Graph Algorithms
Dynamic programming is also used with to great benefit in graph algorithms. We have indeed already
looked at the two best-know examples: the computation of the transitive closure and the all-pairs shortest
path problem.

Transitive closure algorithm: The Floyd-Warshall Algorithm
Recall that in graph theory the transitive closure of a DAG G is an augmented version of G that makes the
reachability in G explicit. It contains an edge from a to b for every pair of nodes a, b where there is a
directed path from a to b, ie. where b is reachable from a.

A trivial way to compute the transitive closure would be to deploy either DFS or BFS for each possible
start node and to insert an edge from the start node to each node that is visited. Since both traversal
methods visit each node that is reachable from the start node this is guaranteed to generate the
transitive closure.

Let's view this problem from the perspective of dynamic programming.

As usual, we start from a recursive definition of the problem for which we then find a suitable "bottom-up"
implementation. The definition is simple: Node C is reachable from node A if either there is an edge from
A to B or if there is an intermediate node C such that C is reachable from A and B from C.

As before we could implement this directly as a recursive algorithm, but as before this would be very
inefficient because of redundant calls, and a dynamic programming solution is preferable. Since we want
all partial results (all paths!) anyway, it is useful to use the graph itself as the storage structure for all the
intermediate results. We simply need to try all the possible pairs with all intermediate nodes.

Algorithm transitive-closure-DP(G)
   input: a graph G
   output: the transitive closure of G
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   let G1 := G
   for hop in AllNodes
      for start in AllNodes
         for end in AllNodes
            if not (start=end or start=hop or hop=end)
               if ( edge(start, hop) exists in G1
                    and edge(hop, end) ) exists in G1 then
                         insert edge(start, end) into G1
end.

We have arrived at Warshall's transitive closure algorithm
(https://www.alexandriarepository.org/reader/vce-algorithmics/53766)!

The stopping condition deserves a further look. Why are we justified in testing every hop only once? We
are effectively iterating the test for each pair of nodes n exactly times. Clearly any cycle-free path can
have at most n nodes on it, and all paths tested in each iteration (i+1) will be at least one node longer
than the paths previously considered in iteration i. Thus, no new paths can be generated after n
iterations.

Implementation in Edgy
Below is the full implementation of the coin change problem in edgy. It directly mirrors the pseudo-code
given above.

Computational Cost of Warshall's Algorithm
Let us have a brief look at the runtime complexity of the transitive closure algorithm. As often is the case
for Dynamic Programming algorithms, it is fairly simple to determine.

https://www.alexandriarepository.org/reader/vce-algorithmics/53766
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What is the asymptotic runtime complexity for the Warshall algorithm for transitive closures? 7

We could also have solved the transitive closure problem as outlined above with n successive calls to a
DFS or BFS. As we had determined in an earlier module, the runtime complexity of DFS and BFS is
O(n+m) for a graph with n nodes and m edges. How do the two approaches compare? There can be at
most O(n2) edges in a simple graph, thus m=O(n2). Deploying DFS or BFS n times thus takes time

Both approaches have the same runtime complexity! However, due to its simpler structure, Floyd-
Warshall's algorithm will generally run faster if the graph does indeed have close to n2 edges. However, if
the graph is sparse, i.e. if it has significantly fewer than n2 edges, it may be faster to run DFS/BFS
repeatedly.

All-pair shortest path: Floyd's algorithm
We have already seen how the same idea can be used to compute the shortest paths between all pairs of
nodes in a graph. The structure of the dynamic programming algorithm for this problem is almost
identical to the Warshall algorithm for transitive closures. The fundamental difference is that instead of
just inserting an edge we keep checking whether a shorter connection has come into existence in a later
iteration. You will recognize this algorithm as Floyd's algorithm for the all-pair shortest path problem
(https://www.alexandriarepository.org/reader/vce-algorithmics/53768).

Algorithm all-pairs-shortest-path-DP(G)
   input: a graph G
   output: the transitive closure of G
           with shortest path lengths as edge attribute "length"
   let G1 := G
   for hop in AllNodes
      for start in AllNodes
         for end in AllNodes
            if not (start=end or start=hop or hop=end)
               if ( e1=edge(start, hop) exists in G1 begin
                    and e2=edge(hop, end) ) exists in G1 then
                  if (edge(start, end) does not exist in G1 then begin
                         insert e3=edge(start, end) into G1
                         let length(e3)=+infinity
                  end
                  let length(e3)=
                        min(length(e3), length(e2)+length(e2))
               end
end.

Implementation in Edgy
below is the full implementation of Floyd's algorithm in edgy. It directly mirrors the pseudo-code given
above.

https://www.alexandriarepository.org/reader/vce-algorithmics/53768
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Computational Cost of Floyd's Algorithm

Unsurprisingly, the same considerations as for Floyd-Warshall's algorithm apply to Floyd's algorithm. We
are justified in stopping after n iterations because all possible intermediate connections that are not cyclic
have been considered.

The runtime complexity of Floyd's algorithm is obviously likewise O(n3).

We could solve the problem with a different approach, since we know an algorithm that solves the
shortest path problem for a single start node: Dijkstra's algorithm. Simply running Dijkstra's algorithm for
every possible start node would clearly solve the all-pair shortest path problem.

We had earlier determined that the runtime complexity of Dijkstra's algorithm for a connected graph (if
implemented wisely) is O(m log n). Running Dijkstra n times and assuming m=O(n2) edges, the total
runtime complexity is

But for large sparse graphs we cannot assume that we have on the order of n2 edges and would have to
compare O(n3) with O(nm log n). Thus, for large sparse graphs repeated runs of (a good implementation
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of) Dijkstra's algorithm may actually be preferable.

Memoization

Nota bene: Memoization is not formally a part of the study design of VCE Algorithmics.

Nota benissimo: It is still useful to know and in many ways easier to understand than full dynamic
programming.

There is a "sneaky" way to get around having to devise a Dynamic Programming algorithm for a
recursively defined problem and to still avoid redundant computations. This approach is called
Memoization (http://en.wikipedia.org/wiki/Memoization). It essentially amounts to maintaining the original recursive
call structure but to explicitly store and reuse the intermediate results while the recursion is executed.

The following algorithm illustrates the technique for the rod cutting problem that we considered above:

Algorithm cutting(L)
  input: an integer L (the rod length),
  output: maximum profit from selling a rod of length L in segments
  assumptions:
       the profits for the lengths of rods that are sold uncut are
       p1, ..., pk and their corresponding lengths are l1, ..., lk

  for j from 1 to L: P[j]:=-infinity
  return cutting-main(L)
end.

Algorithm cutting-main(L)
  (* this performs the real computation
     after the initialisation has finished *)
  max = -infinity
  for j from 1 to k begin
     if (lj<L) AND (pj+cutting-memo(L-lj)>max) then
         max := pj+cuttting-memo(L-lj)
     end
  return max
end.

Algorithm cutting-memo(L)
  (* this is just an auxilliary function that checks *)
  (* whether this value has already been computed *)
  (* if not it computes it and stores it as an intermediate result *)
  if P[L] <> -infinity then return P[L]
  else begin
     P[L] = cutting-main(L)
     return P[L]
  end
end.

There is no real advantage to using memoization instead of an iterative dynamic programming approach.
The theoretical runtime complexity of both approaches is the same in these cases, but the simple

http://en.wikipedia.org/wiki/Memoization
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iterative structure of the dynamic programming version (rather than recursive calls) makes it faster than
the memoization version.

However, memoization has an advantage that is conceptually very neat: It automatically takes care of
generating the values in the order in which they are needed without relying on a pre-defined order. Thus
the approach comes in handy if for some reason it is too difficult (or impossible) to determine in which
order the results have to be computed .

1 The algorithm is another example of a greedy approach: it tries to make the maximum progress in each step and it never
revises a decision previously made. As always we have to be suspicious: greedy algorithms are fast when they work, but
they don't always work.

2 The answer turns out to be no! Consider a coin system with denominations $1, $3, $4 and C=6. The greedy algorithm
would use three coins ($6=$4+$1+$1) but it could have used only two coins ($6=$3+$3). Admittedly, this is an unusual
coin system.

3 The total mount to be changed.
4 You can easily convince yourself that the number of possible combinations that are tested must grow exponentially.
5 For our example, a one-dimensional array (matrix) indexed with the amount C to be changed is the ideal storage

structure. A[i] will store the number of coins needed to pay out the amount i.
6 The total runtime complexity (number of potential updates of the array) is O(nC).
7 We have three nested loops iterating over all nodes, so for n nodes we perform n^3 repetitions of the test and

assignment in the innermost loop. The total runtime complexity is thus cubic - O(n^3 ).
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3.6
Game Trees and the Minimax Algorithm

Deciding which turn to take
Many games involve a series of turns, in which opponents decide on their optimal move. A typical move
might involve placing or moving a piece on a board. At each turn, there are one or more moves that could
be made. Which one is the best? We need to make a decision, and we can use a special kind of decision
tree, called a game tree, to help.

Here's part of a game tree for tic-tac-toe. The root node represents the start state with an empty board: -
--/---/--- (three empty rows). The child node ---/-x-/--- represents a board with an X in the
middle.

Notice that the above tree only shows three options for the first move by player x, even though there are
nine cells where the first piece can be played. Why are only three options shown?

This graph only includes the first two moves. Deeper in the tree, we can expect to find nodes that
represent a win, e.g. ox-/xo-/x-o, a win by player o. On the previous turn, player x should be able to
detect that o can win on the next turn by looking further down in the tree, and choose a move that blocks
the win. We can do this systematically using the Minimax Algorithm.

The Minimax concept illustrated
To understand the core idea of the Minimax Algorithm, consider the following game tree. The game itself
consists of just two turns. Player 1 has two choices A1 and A2. For each of these moves, there are two
possible responses by player 2.
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(https://www.alexandriarepository.org/wp-content/uploads/game-tree-3.png)
The desirability (or "utility") of each final state is shown as an integer in the bottom row. This number
represents the benefit to player 1, as either a win (+1), loss (-1), or draw (0). Assuming that player 2 will
act to minimise the benefit to player 1, we can predict player 2's behaviour. Accordingly, we write the
minimum value of the pair of leaf nodes on their parent: min(+1, -1) = -1, and min(0, +1) = 0 (see the
two internal nodes below). Now, player 1 will decide on a course of action that maximises the result, so
we write the maximum value of the internal nodes on their parent (the root of the tree below): max(-1, 0)
= 0.

So player 1 will choose move A2, and player 2 will respond with A21.

Notice how our approach involved working up the tree from the leaves, alternately writing minimum and
maximum values on the parent nodes at each level. However, when it came to using the tree, we worked
down from the root (the start start). In this way, the minimax algorithm gives us unlimited look-ahead. If
some branch could only take us to -1 leaves (5 or 20 moves later perhaps) we will never take that branch.

https://www.alexandriarepository.org/wp-content/uploads/game-tree-3.png
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The Minimax Algorithm
The Minimax Algorithm begins from the root of the game tree, the initial state of the game, e.g.
minimax(root, True). The second argument is a Boolean value that indicates whose turn it is. The
function recursively calculates the utility of node using the utility of it's children.

function minimax(node, maximizingPlayer)
    if node is a terminal node
        return the value of node
    if maximizingPlayer
        bestValue := -∞
        for each child of node
            val := minimax(child, False)
            bestValue := max(bestValue, val)
        return bestValue
    else
        bestValue := +∞
        for each child of node
            val := minimax(child, True)
            bestValue := min(bestValue, val)
        return bestValue

(The concept of recursion will be covered later in the unit.)

Let's step through the above example using the Minimax Algorithm. We start with Player 1, who is the
player who we want to win (the "maximising player"). It will be useful to have a way to refer to the nodes,
so here is a version of the game tree with node labels:

→ minimax(n, True)
    compute highest value of children
        → minimax(n1, False)
            compute lowest value of children
                → minimax(n11, True)
                    the value of n11 is +1
                +1
                → minimax(n12, True)
                    the value of n12 is -1
                -1
            lowest value of +1 and -1 is -1
        -1
        → minimax(n2, False)
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            compute lowest value of children
                → minimax(n21, True)
                    the value of n21 is 0
                0
                → minimax(n22, True)
                    the value of n22 is +1
                +1
            lowest value of 0 and +1 is 0
        0
    highest value of -1 and 0 is 0
0

Using the Minimax Algorithm, we have determined that the best result Player 1 can hope for is a draw. Of
course, Player 2 could make a mistake in which case Player 1 might be able to do better. But assuming
that Player 2 is playing sensibly, and is as capable as Player 1 in considering the downstream
consequences of any move, then it will be a draw.

Doing it in Edgy
It's not hard to translate the Minimax Algorithm into Edgy code. Here we go a step further to store the
utility of a node as an attribute of the node, and to keep track of the best child of a node.

We haven't specified the value to report for a terminal node. We assume there is some other process that
does the calculation and stores a utility value in a node attribute. For instance, it might examine the tic-
tac-toe board and determine whether it is a win for x, a win for o, or a draw (a completed board where
neither player is a winner).
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(Is it possible to have a board which is a win for both x and o? If so, is this a problem?)

Types of game
We can classify games according to the following system. Can you identify the category of game that we
are able to model using a game tree?

deterministic chance
perfect information chess backgammon

imperfect information battleship scrabble
Would it be true to say that a game like tic-tac-toe is deterministic? What assumption do we make about
the players? Is there any room for chance in the way the game is played? Explain.
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3.7.1
Travelling Salesman Problem

The Travelling Salesman Problem
Let's consider a route-finding problem, in which a salesman needs to visit a number of cities. Imagine that
he has a map with these cities and the distances between each pair of cities that are directly connected
by a road. He needs to find the shortest possible route that visits each city exactly once and then returns
to his start city.

Well, this sounds quite similar to some of the other path-finding problems that we've encountered before.
So, let's first create a weighted graph with nodes representing the cities and weighted edges representing
the roads that connect them and their distances. Here's an example with four cities, A, B, C and D:-

Naive Solution
Can you think of a way to solve this?

The brute-force solution is one naive place to start. We simply try all possible routes. So, if the salesman
starts at A, he has 3 options A-B, A-C, or A-D.

And then from each of these cities, he has two further unvisited cities that he could visit:-
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… and so on.

We can write an algorithm to do this:- it will simply find all possible routes, and take the shortest one.

function brute_force_tsp(node, path, home_node, min_path):
    inputs: node - the next city to add to the path
            path - a list of cities in the current path (or route)
            home_node - the start and end city for the path
            min_path - the completed path of minimum length

    add node to path
    if path contains all nodes in the graph and there is an edge between node
and home_node:
        add home_node to path
        if length of path < length of min_path:
            set min_path = path
        return min_path
    else:
        foreach neighbour of current_node:
            if neighbour is not in path:
                set min_path = brute_force_tsp(neighbour, path, home_node)
    return min_path

So, how long will this brute-force algorithm take to run for our example? Let's count the number of times
the basic operation (creating a possible route) is performed. For our example graph with 4 cities, our
algorithm will need to create routes from the start city to 3 possible next cities, then for each of these it
will create a route to 2 further cities, and then to the 1 remaining unvisited city. So, it will create 3 x 2 x 1
= 6 possible routes, and take the shortest of these to be the best route.

The 6 possible routes are A-B-C-D-A, A-B-D-C-A, A-C-B-D-A, A-C-D-B-A, A-D-B-C-A and A-D-C-B-A. There are
two shortest routes of length 12: A-B-C-D-A and A-D-C-B-A. And, if you look closely you may notice that
these two shortest routes are simply the same route in reverse.

So, what about a larger example? How many possible routes would a brute force algorithm need to
examine in this case? Let's take a look at an example with 7 cities:-
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How many routes would the brute force algorithm need to examine when it is run on this graph?

If we start at node A, we have 6 possible next cities to visit. Then, for each of these 6 cities, we have a
further 5 unvisited cities…. and so on. And, this gives a total of 6 x 5 x 4 x 3 x 2 x 1 = 720 possible routes
that our brute force algorithm would need to examine. You can see that, even though we only added 3
extra cities into our graph, the number of possible routes has increased significantly.

So now, let's think about the time complexity of the brute-force approach. From the examples above we
have the following results:-

4 nodes:   3 x 2 x 1 = 6 possible routes
7 nodes:   6 x 5 x 4 x 3 x 2 x 1 = 720 possible routes

Can you see a pattern? Remember that the time complexity is often expressed relative to the size of the
input (the number of nodes in this case). Is there a way to represent that number of possible routes as a
function of the number of cities (or nodes) in the graph?

Well, it turns out that the brute force algorithm has a time complexity of O(n-1!). That is, for a graph with
n nodes, the brute force algorithm will need to check n-1 x n-2 x n-3 … x 2 x 1 (or n-1 factorial) possible
routes.

We have seen that even for a small graph, the number of possible routes get's quite large. For a slightly
bigger graph containing, say, 11 cities, we would need to check 10! = 3,628,800 possible routes. This is
starting to look unmanageable. As we add cities to our graph, we get a combinatorial explosion in the
number of possible routes:- and although, it is possible, in theory, to check all possible routes, the number
of routes is so enormous that it is completely impractical, not only at present but for any conceivable
computer in the future.

Other Possible Approaches
At first glance, the travelling salesman problem looks very similar to the problem of finding a minimum
cost spanning tree (MCST) for a given graph. Recall the problem of finding a spanning tree involves
finding a subgraph that connects all the edges together and is a tree. And, if we assign weights to the
edges, then the MCST, is the spanning tree with edge weights that sum to less than those of any other
spanning tree.
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We've seen that there are lots of algorithms for finding the MCST in linear time - for example Kruskal's
algorithm or Prim's algorithm. So, could we use one of these algorithms to solve TSP? Well, the MCST and
TSP problems are subtly but very importantly different. While both aim to find minimal cost subgraphs of
a graph which connect all vertices, a MCST is a tree, where the Travelling Salesman Problem aims to find
a path or cycle (a route in which the tree is not allowed to branch). This restriction on the tree results in a
much harder problem and for this reason, the algorithms that can be used to efficiently solve the MCST,
are not suitable for the TSP.

In fact, the Travelling Salesman Problem has been studied by numerous researchers for more than 60
years, and no one has yet found an exact solution that runs in a reasonable amount of time. The
Travelling Salesman Problem belongs to a group of problems in computer science for which there is no
known "efficient" solution. But, what exactly do we mean by an "efficient" solution? An algorithm is
considered "efficient" if its time complexity grows as a polynomial function of the size of the input (such
as n, n² or n³). We will discuss this in more detail in the next module.

Hard Problems in Computer Science
The travelling salesman problem is not just applicable to route-finding between cities. It has numerous
different applications such as vehicle routing, the order-picking problem in warehouses, the manufacture
of microchips and DNA sequencing.

But, why are we learning about a problem that cannot be solved efficiently? Well, when you come a come
across a problem in computer science, it is useful to understand whether it can be solved it efficiently. In
the next few modules, we are going to look at more of these "hard" problems, how they are defined and
some strategies for finding good (if not optimal) solutions to them.
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3.7.2
NP-Hard Problems: Soft Limits of Computation

Easy versus Hard Problems
During this course, we have seen various problems and algorithms to solve them. The vast majority of
these have been solvable in polynomial time (or less). For example, Djikstra's algorithm for finding the
shortest path between two nodes in a graph with positive-weight edges or Prim's algorithm for computing
the Minimum Cost Spanning Tree of a weighted graph.

However, we have also seen the Travelling Salesman Problem:- a problem for which there is no known
polynomial-time solution. And, in fact, there are a number of other problems for which this is also the
case. Broadly speaking, the difference between problems that can be solved in polynomial-time and those
that cannot (to our knowledge), corresponds to the difference between computationally tractable ("easy")
and intractable ("hard") problems.

So, if you were faced with a problem that you hadn't seen before, how would you know whether it is
tractable? How can you create an appropriate solution to it? Bear in mind that "hard" problems are not
unsolvable, but may require the use of alternative strategies to solve in reasonable time. We're going to
look at how we define "easy" and "hard" problems in computer science, how we can go about identifying
hard problems and where we define the boundary between the two categories.

Complexity Classes: P and NP
Let's look at some more formal definitions of easy and hard problems. In computer science, we divide
problems with related time-complexity into complexity classes. The first complexity class which we're
going to look at is called P. It contains what we can think of as "easy" problems - those that can be solved
in polynomial time. That is, problems for which there is a solution, whose worst case complexity is
polynomial time or less (e.g. n, n², n³ etc, where n is the size of the input). So, problems in P include the
examples that were mentioned above:- finding the shortest path between two nodes in a graph with
positive-weight edges, or finding the Minimum Cost Spanning Tree of a weighted graph.

Another complexity class is the a group of problems for which a given solution can be checked for
correctness in polynomial time. This means that, if we are given a solution to a problem in NP, there is an
algorithm that can verify the validity of this solution in polynomial time. This group of problems is known
as NP. Clearly, the class NP contains all the problems in P, since any solvable problem in polynomial time
can also be checked in polynomial time.

An example of a problem in NP is the decision version of the Travelling Salesman Problem:- where, given
a length x, the task is to decide whether the graph has any tour shorter than x. Given the previous
example network of cities, as shown below, and a target tour length of 13:-



3.7.2 NP-Hard Problems: Soft Limits of Computation

225

… we can write an algorithm to check that the solution A-B-C-D-A is a valid tour with length less than 13.
The algorithm would simply need to iterate through the cities in the tour checking that each city is visited
exactly once, that edges exist connecting all consecutive cities visited, and calculating the tour's length to
check whether it is less than x. Such an algorithm would have a time complexity of O(n), where n is the
number of cities in the network, as it iterates through every city, .

Why are they called P and NP? 1

So, we know that all problems in P are also in NP. However, people are still uncertain about the opposite -
are all NP problems also in P, or do some NP problems exist that are not in P? In other words, does P =
NP? Do any problems exist that can be verified, but not solved in polynomial time? Well, we don't know.
This remains one of the most important open questions in computer science. Despite decades of
research, no problem has been proven to be in NP but not in P (that is can be verified but not solved). For
example, although there is no known polynomial time solution for the 3decision version of the TSP, no one
has proven that no such solution exists.

Although we do not know for sure, most scientists and mathematicians think that there are problems in
NP that do not have polynomial time solutions (i.e. that P != NP). It is hard to believe that there may be a
simple trick that no one has yet discovered in decades of research, that will allow "hard" problems to be
solved in polynomial time. And, finding a solution to some problems in NP, seems intuitively to be much
harder than verification.

NP-Complete Problems
We know that there are numerous problems for which no known polynomial-time solution exists. So, when
you encounter a problem, how do you know whether it is one of these problems and whether you should
even attempt to find an efficient solution? Well, there is a subset of NP problems that are known to be the
"hardest" problems in NP, for which no known polynomial time solutions exist. These are called NP-
complete problems. If we can show that a given NP problem is "at least as hard" as a any other NP
problem, then we know that this problem is NP-complete. To show that a problem is "at least as hard" as
a known NP problem, we use a technique called "reduction".

So, what do we mean by "reduction"? A problem P1 can be reduced to P2 if you can transform an instance
of P1 to an instance of P2, solve P2, and then map the answer back to the original problem. For example,
if we want to solve the problem of finding the median of a list of numbers, we can reduce this to the
problem of sorting the list of numbers. To do this, we can simply sort the list, then find the middle
element of the sorted list and this middle element is the solution to the problem of finding the median.

More formally, we can say that a problem, P', is NP-complete if,

P' is in NP, and
every other problem in NP, can be reduced to P' in polynomial time (or P' is NP-hard - see below).
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We have seen above how to check whether a problem is in NP, which covers the first condition of NP-
completeness. But how can we show that every other problem in NP can be reduced to a given
problem? Well, we can take advantage of the transitivity of a polynomial reductions, and use a known NP-
complete problem in place of 'every other NP problem'. So, we would need to show that a known NP-
complete problem can be reduced in polynomial time to the problem we are trying to solve. There are
hundreds of known NP-complete problems.

NP-Hard Problems
But what about hard problems that are not in NP? For example, the optimisation version of the Travelling
Salesman Problem - in which we need to find the tour of minimal length (not just a tour of less than a
given length). Such problems are known as NP-hard problems, and satisfy only the second condition of
NP-completeness stated above. These are problems that are "at least as hard as the hardest problems
in NP". More formally, this means that there is a reduction from every problem in NP to a given NP-hard
problem. Or equivalently that there is a reduction from a known NP-complete problem to a given NP-
hard problem. Unlike NP-complete problems, and despite their name, NP-hard problems do not have to
be in NP. The diagram below provides an illustration of how the various classes of problems which we
have discussed are related.

There are quite a number of important problems in computer science that are known to be NP-hard. If
you can show that a problem is NP-hard, that is strong evidence of computational intractability. This
doesn't mean that there is no solution to the problem, but rather that there is no known efficient means of
finding such a solution. Understanding whether a problem is NP-hard, means you can have realistic
expectations about the efficiency of a solution, and you can use appropriate strategies to find a solution.
We'll be looking at some strategies for solving NP-hard problems in the next few modules.

1 Well, P obviously stands for polynomial time. But what about NP (a common abbreviation for "no problem")? Well, NP
actually stands for "non-deterministic polynomial". This means that a solution to an NP problem can be found in polynomial
time by a special (and quite unrealistic) kind of algorithm called a non-deterministic algorithm. Such an algorithm would
have the power to always make correct choices at every step of a solution. Solving the problem with a non-deterministic
algorithm, is equivalent to verifying a given solution.
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3.7.3
Heuristics
We've seen that there are quite a number of problems in computer science that are NP-hard. In fact, you
are very likely to encounter them in your own projects. And, when you're faced with a problem that is NP-
hard, even the best known solutions may not be efficient. We saw that even finding the solution to a
reasonable-sized Travelling Salesman Problem (TSP), of say 100 cities, is beyond the capabilities of any
conceivable computer in reasonable amount of time. So, should we just give up and say the problem is
too hard? What would the salesman do then? He still needs to visit the cities in his network. Is there a way
he can decide on a good, if not optimal, route?

Let's think about some strategies that we could apply to solve this and other NP-hard problems.

Random Guessing
If generating all possible routes is too slow in practice, perhaps we could generate random routes. Then,
once we have run out of time, we can just take the shortest one that we have found. This would be a fairly
straightforward algorithm. We use a variable to store the shortest route so far, and we repeatedly
generate random permutations of the cities. If a permutation (or route) is shorter than the best route so
far, then we store this route instead. Once a certain number of random guesses have been made, we can
simply stop and take the shortest route we have found to be the best.

The trouble with this solution is that for large numbers of cities, there is no guarantee that we will find a
reasonable solution. There are just so many possible permutations. It's is a bit like searching for a needle
in a haystack, by pulling out one random straw at a time.

Heuristics
So, what might be a better approach to finding a good solution? Perhaps we could use heuristics to help?
Recall from module 3.10.9, that heuristics are 'rules of thumb' that can be used to solve a problem more
quickly when classic methods are too slow, or for finding an approximate solution when classic methods
fail to find any exact solution. Let's see how we can use heuristics to help us find an approximate solution
to the TSP and other NP-hard problems.

Simple Approximations
What about the similarity between the TSP and the problems of finding a Minimum Cost Spanning Tree
(MCST)? Perhaps we can take advantage of this similarity to help find a solution for the TSP? Although we
have noted that the cycle that the TSP aims to find differs from a MCST tree, the problems are similar in
that they both require visiting every node in a graph using a minimal path. So, could we use a MCST to
generate a tour (or cycle) that solves the TSP? It might not guarantee to be a minimum cost route, but
would it be a reasonable approximation?

Let's look at an example network with 7 cities:
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We can find a minimum cost spanning tree for this network efficiently, using one of the algorithms
discussed in module 3.1: Prim's Algorithm, Kruskal's Algorithm or the Reverse-Deletion Algorithm. A MCST
for our example network looks like this:-

Now that we have a MCST, how can we convert it to an non-optimal solution to the TSP (an approximately
minimum cost tour or cycle)? Well, a tour is like a tree, except that it cannot have branches. So, we need
to walk through the tree converting any branch structures into simple paths when we find them. More
precisely, if the walk takes to you node already visited, continue walking the tree until you encounter an
unvisited node, then draw a shortcut from the last node visited to the newly discovered unvisited node.
Once, we have visited every node, we create take a direct route from the final node back to our original
start node. If we colour the edges in our example MCST red as we walk the tree, our tour can be created,
starting from node 1, with the steps below:-
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We can write an algorithm to do this as follows:-

function approximate_tsp(start_node):
    create a MCST (using Reverse-Deletion, Prim's, Kruskal's algorithm etc.)
    let tour = []
    tour = create_tour(start_node, MCST, tour)
    add start_node to tour
    return tour

function create_tour(start_node, MCST, tour)
    add start_node to tour
    foreach neighbour of start_node in MCST:
        if tour does not contain neighbour:
            create_tour(neighbour, MCST, tour)

Look carefully at the example above. Does this approximation method create an optimal solution to the
TSP?

Well, no, in fact it doesn't create an optimal solution. The tour that it finds has length 340. However, the
minimum length tour is 211 long (taking the path 1-2-4-3-7-5-6-1). Using a MCST gives us an good
solution to the TSP, which we are able to find in "reasonable" time.

So, let's look a bit closer at this approximation algorithm and check that it does in fact run in "reasonable"
time. There are 2 steps to our algorithm:
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create a MCST, for which there are a number of different known polynomial time algorithms.1.
convert the MCST to a path (or tour). This is also a polynomial (linear) time algorithm, as we simply2.
need to walk the MCST, passing over every node at most twice (if it is the branch point for a tree)
and ensuring there are edges connecting them.

As both steps run in polynomial time, the approximation algorithm as a whole also runs in polynomial
time.

We have seen a way to use the MCST as a heuristic for finding a solution to the TSP. This heuristic is a
way to find a good solution to the TSP efficiently. So, by using a heuristic, we have traded off the
optimality of our solution in return for a reduced time complexity to find it.

Edgy code for Approximating the TSP using MCST
Below is some Edgy code for approximately solving the TSP using a MCST, as described above.

First, we need to define some helper functions. The first creates an MCST using the Reverse-Deletion
algorithm:-

And this requires another helper function to create an ordered list of edges in descending order by
weight:-
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And a third helper function, will create a path or cycle from a MCST:-

Then, we can put them all together, as follows, to create and then display a cycle that is a good, but non-
optimal, solution to the TSP:-
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3.7.4
Heuristics for the Graph Colouring Problem

The Graph Colouring Problem
Now we're going to look at a heuristic for solving another known NP-complete problem. Imagine that you
need to colour the countries on a map such that no two neighbouring countries are the same colour, like
this:-

If you had the map below of various countries in Europe, how could it be coloured using 4 colours?
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We can represent this map as a graph, in which the nodes represent the countries on the map, and the
edges connect neighbouring countries.

And we can restate our map-colouring problem as a graph colouring problem as follows:- colour the n
nodes in a graph, such that no two adjacent nodes are the same colour. There is an obvious solution that
uses n colours and simply gives each node its own colour, but we want to see if there is a possible
solution using only 4 colours.

In fact, this is a well-known and well studied NP-hard problem in computer science known as the "graph
colouring" problem. The graph colouring problem can also be used to model a variety of other everyday
scenarios. For example, job scheduling, in which a set of jobs must be assigned to time slots, with some
pairs of jobs being in conflict (for example because they rely on a shared resource). In this case nodes are
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used to represent jobs, and edges exist where jobs conflict. The colours assigned to the nodes represent
each represent a time slot. Further applications of graph colouring include timetabling, pattern matching
and flight and other scheduling problems. Even soduku puzzles can be modelled as a variation on the
graph colouring problem. Each grid square is a node in the graph, and those that share a row, column, or
sub-grid are connected by edges in a graph. You need to complete a partially complete puzzle by putting
the numbers 1 - 9 in the grid squares - equivalent to finding a colouring with 9 colours.

Approaches to solving the Graph Colouring Problem
Can you think of how we might write an algorithm to solve the graph colouring problem? We could adopt
a brute force approach - try every possible colouring and see whether we can find a valid colouring. But,
for any reasonable size graph this is going to take too long. We've already seen that brute-force
algorithms are not efficient for solving NP-complete problems, as their running time grows exponentially
large with the size of the problem.

Another possible approach is to use a greedy algorithm: we consider each node in sequence and assign
each node the first available colour that does not conflict with any previously coloured nodes. If
necessary, use a new colour. Do you think that this greedy algorithm will guarantee to find a solution if
one exists? Imagine we applied this algorithm to the following graph:-

If we colour the nodes in numbered order as shown below, we get a valid colouring with 2 colours:-

However, if we colour the nodes in the order 1,5,2,6,3,7,4,8, a valid colouring requires 4 colours, as shown
below:-
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As you can see, the greedy algorithm is not guaranteed to generate a valid solution for a given number of
colours. The number of colours used in the resulting colouring depends on the order in which the nodes
are visited. Theoretically, there exists an ordering that leads to a greedy colouring with a minimal number
of colours. However, greedy colourings can also be arbitrarily bad as we can see in the second colouring
above.

Iterative Improvement Algorithms
Let's think about another approach to the graph colouring problem. What if we start with a random
colouring using n colours, and then we change the colour of one individual node at a time, to reduce the
number of adjacent nodes that are coloured the same?

This is the idea behind a group of algorithms known as iterative improvement algorithms - we start with a
complete, random configuration and modify this to improve its quality. It may be helpful to think of all
possible configurations as forming the surface of a landscape - configurations that are better (according
to some evaluation score) are higher points in the landscape. A basic iterative improvement algorithm
chooses a random point in the landscape as its starting point. It then moves around the landscape trying
to find the highest point, which corresponds to the optimal solution. Generally, iterative improvement
algorithms only keep track of the current solution and look at neighbouring configurations, and because of
this, it has been said that they resemble "trying to find the top of Mount Everest in a thick fog whilst
suffering from amnesia". Nonetheless they are useful for solving hard problems.

Randomized Search - Simulated Annealing
So, if you imagine that you are moving through a "landscape" of possible solutions like an iterative
improvement algorithm. You come to a point from which there are no better neighbouring solutions. You
can probably imagine that you're at the top of some kind of peak. Does this mean you've found the best
solution? Not necessarily. In fact, this kind of local search algorithm can lead to a situation where you are
stuck at a sub-optimal solution (also known as a local maxima). For example, in the diagram below, the
best solution is at the yellow star. However, a simple algorithm might reach the green star and never
move away from it. How could you know whether there is another larger peak elsewhere?
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Well, this is where we can use an iterative improvement algorithm called 'Simulated Annealing". In
simulated annealing, we move to a neighbouring solution if it is better, however, we may also sometimes
move to a neighbouring solution that is worse. As the algorithm continues to run, we decrease the size
and frequency of "bad" moves that are acceptable. This approach avoids getting stuck on local maxima.

Here's a high-level overview of the simulated annealing algorithm:-

The flowchart above gives you a basic ides of how simulated annealing works, but it leaves out some
important details:- how do we generate a neighbouring configuration, how do we judge if one candidate is
better than another, when does the algorithm terminate and what is the acceptance probability and how
can we calculate it?

Let's look at these details one by one:-
Generating a neighbouring configuration: A neighbouring configuration is generated by only
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changing one thing at random in in the current configuration. In our graph colouring example, this
means changing the colour of one node.
Judging which configuration is better: We need a way of calculating a "score" for each
configuration, such that a better configuration has a higher score. In the case of graph colouring,
this could be simply calculating the proportion of the edges in the graph that connect different
coloured nodes.
Termination: The simulated annealing algorithm is based on the process of heating and cooling
metals known as "annealing". As a result, the algorithm uses a parameter which is known as the
"temperature" and is gradually reduced for each iteration. This is sometimes referred to as the
cooling "schedule". Once the temperature reaches a certain minimum value, the algorithm
terminates. Usually the temperature starts at 1.0 and is decreased after each iteration by
multiplying by a constant, alpha, which is usually between 0.8 and 0.99.
Calculating the acceptance probability: The acceptance probability is used to decide whether to
move to a worse configuration or not. It is a number between 0 and 1 which is them compared to a
random number between 0 and 1 in order to decide whether to accept a new configuration or not.
It is usually calculated using the formula below. So, as the temperature is reduced, the algorithm is
less likely to accept a worse configuration.

acceptance_probability =e((new_score - old_score) / temperature)

Simulated Annealing for the Graph Colouring Problem
Let's see how we could use simulated annealing to solve the graph colouring problem. We can write an
algorithm to do this as follows:-

function find_colouring(colours):
    temp = 1.0
    alpha = 0.8
    min_temp = 0.01
    colourings_per_temp = 20

    current_colouring = generate random initial colouring using colours
    current_score = score(colouring)
    while temp > min_temp:
        repeat colourings_per_temp:
            new_colouring = change the colour of one node in current_colouring
at random
            new_score =  score(new_colouring)
            if new_score = 1:
                // stop if we have found a valid colouring
                return new_colouring
            else if (new_score > current_score):
                // apply the new colouring
                current_colouring = new_colouring
                current_score = new_score
            else:
                acceptance_probability = e^((new_score - current_score) / temp)
                if acceptance_probability > random(0..1):
                    // apply the new colouring
                    current_colouring = new_colouring
                    current_score = new_score
                 else:
                    // keep the current colouring
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        temp = temp x alpha

function score(colouring):
    valid_edges = 0
    for each edge in colouring:
      if edge connects 2 node coloured different colours:
         valid_edges = valid_edges + 1
    return valid_edges / number of edges in graph

Consider the simulated annealing algorithm detailed above. Do you think it will find a solution to the
graph colouring problem of using 4 colours to colour the map of central Europe above?

Well, there is no guarantee that it will find a solution (if one exists). However, like other heuristic
approximation methods that we've seen, the search that it performs should find a 'good' solution provided
the cooling schedule is chosen appropriately. For the graph colouring problem, you might want to modify
the algorithm to store details of the best colouring that it has found so far (i.e. the colouring with the best
score).

Here's one possible solution to colouring the map of Europe above with 4 colours:-

Edgy code for using Simulated Annealing to Solve the Graph Colouring
Problem
Here is the Edgy code for solving the graph colouring problem using simulated annealing, as described
above:-
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This algorithm requires some helper functions. The first of these, generates a neighbouring configuration
by randomly changing the colour of one node. Note that this function also reports which node was
changed and from what colour. This is in case the configuration is rejected and the random change must
be undone.



3.7.4 Heuristics for the Graph Colouring Problem

241

Another helper function calculates a score for the current colouring:-

And, here's the final helper function, that calculates the acceptance probability for a newly generated
colouring:-
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4.5 A Weird Computational Formalism
4.6 A short Introduction to the General History of Computing



4.1 Hilbert’s Program

243

 

4.1
Hilbert's Program
These videos explain a "simple" question in set theory

(https://www.alexandriarepository.org/wp-content/uploads/20150904205248/Russell-Zermelo-Paradox.mp4.mp4)
and how it triggered a fundamental crisis in mathematics that lead to the birth of computer science.

(https://www.alexandriarepository.org/wp-content/uploads/20150904205102/Hilberts-Program.mp4.mp4)

https://www.alexandriarepository.org/wp-content/uploads/20150904205248/Russell-Zermelo-Paradox.mp4.mp4
https://www.alexandriarepository.org/wp-content/uploads/20150904205102/Hilberts-Program.mp4.mp4
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4.2
Alan Turing and the Turing Machine
Alan Turing's response to Hilbert's challenge

(https://www.alexandriarepository.org/wp-content/uploads/20150904205513/Turing-Machines.mp4.mp4)

https://www.alexandriarepository.org/wp-content/uploads/20150904205513/Turing-Machines.mp4.mp4
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4.3
Busy Beavers

A Fun Game with Turing Machines that has Deep
Meaning

(https://www.alexandriarepository.org/wp-content/uploads/20150904200401/Busy-Beavers.mp4.mp4)

https://www.alexandriarepository.org/wp-content/uploads/20150904200401/Busy-Beavers.mp4.mp4
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4.4
Undecidability and The Halting Problem: Hard
Limits of Computation
Why some things just cannot be computed (and why Busy Beavers are very unpredictable animals)

(https://www.alexandriarepository.org/wp-content/uploads/20150904204530/Halting-Problem.mp4.mp4)

https://www.alexandriarepository.org/wp-content/uploads/20150904204530/Halting-Problem.mp4.mp4
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4.5
A Weird Computational Formalism
You will not believe how little you need to compute!

(Note: this is purely optional and not formal contents of VCE Algorithmics)

(https://www.alexandriarepository.org/wp-content/uploads/20150904215055/GameOfLifeAndComputation.mp4.mp4)

https://www.alexandriarepository.org/wp-content/uploads/20150904215055/GameOfLifeAndComputation.mp4.mp4
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4.6
A short Introduction to the General History of
Computing
A very brief introduction to the broader history of computation beyond Turing machines.

(Note: this is not a formal part of VCE Algorithmics)

(https://www.alexandriarepository.org/wp-content/uploads/20150904202137/Computing-History.mp4.mp4)

https://www.alexandriarepository.org/wp-content/uploads/20150904202137/Computing-History.mp4.mp4
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5
Searle's Chinese Room Argument
Is artificial intelligence (AI) possible? Can computers think? How can we even address this question? In
this module we consider a famous thought experiment, the Chinese Room, and how it has helped our
understanding of this question. First, for some historical perspective, we review an earlier thought
experiment due to Leibniz.

Leibniz's Mill
Godfried Leibniz lived just prior to the Industrial Revolution, in a period when factories were beginning to
replace solo craftsmen as the means for manufacturing things. With manufacturing came the need for
more complex calculations, e.g. what size of stream and water wheel would be needed to power what size
of mill? With manufacturing also came machines. Devices were already being made for measuring
distances and angles with greater precision. Greater precision led to more intricate machines, such as this
multiplying machine:

Leibniz Calculator (https://en.wikipedia.org/wiki/Stepped_Reckoner)

Leibniz's interest was in formal reasoning. When solving a mathematical problem for instance, you could
simply capture it in a formula, and then apply the rules of calculus. This could be applied to compute the
trajectory of a missile. With this reasoning "technology", there was no longer any need to see who had the
most convincing argument for the solution; you could just write it down and compute. As machines grew
in complexity, Leibniz was able to speculate about building ever more complex machines, to the point
where a machine could manipulate not numbers, but ideas.

Leibniz's Mill is a thought experiment. A mill is a water-powered grinding machine, typically housed in a
building that contains heavy grinding stones, used for turning grain into flour. Other mills performed
different tasks, such as cutting timber (a sawmill). The mill building is large enough that you could enter
and walk around inside (http://www.angelfire.com/journal/millrestoration/mill.html). By referencing a mill,
Leibniz raised the prospect that a human would not need to turn the handle to power the work (as in the
figure above); the machine would manipulate ideas on its own, powered by the environment.

Suppose that the mill contained a complicated version of the above machine. And suppose that, from the
outside, it appeared that this machine was capable of performing thought, i.e. it was capable of
representing information about the environment, manipulating it, and making decisions. Leibniz imagined
walking around inside the machine, and watching the cogs as they turned during the process of thinking.
He wondered, where would the thinking be happening? Where are the ideas? Clearly, the thinking must

http://www.angelfire.com/journal/millrestoration/mill.html
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be taking place somewhere else.

Aside: Leibniz's idea of building machines that could think did not take hold. (What's the main reason why
it could not?)

Searle's Chinese Room Argument
Jump forward 200 years to the middle of the 20th Century and we were now starting to build analogue
computers with a new level of complexity, and it was now conceivable that a computer could process
natural language. Writing in 1950, Turing predicted we would have computers that could engage in a
conversation with us by the turn of the century, although this task has turned out to be harder than
Turing expected. The machines we access each day are vastly more powerful than Turing anticipated,
and so the question still arises for us: at what point can we say that the computer on my desk, or in my
pocket, is a "thinking" thing?

Discussion: What would you set up as a Turing test? Consider this xkcd cartoon (https://xkcd.com/632/).
Recaptchas are quite effective at discriminating humans from machines. If a machine could reliably solve
these visual challenges, would you credit it as being able to think? (Aside: have you noticed that
recaptchas are getting more difficult for humans to solve? Perhaps we will get to the point where
machines surpass humans at solving them.) What would it take to convince you that a computer could
think?

If you have seen either of the movies Her or Ex Machina, you may have new intuitions about this. How
quickly do you anthropomorphise with computers? At one level, you might do this when complaining
about a machine "that has a mind of its own". But usually, you're not serious when you say things like
this. Could you genuinely anthropomorphise the computers in these movies? And could this be genuine
when the the computer roles were played by humans?

Searle, a professor at Berkeley, wrote a paper in 1980 called Minds, Brains and Programs, in which he
proposed the Chinese Room thought experiment.

The Chinese Room
Suppose you find that you have been put in a room. Looking around you, you see a large book, and it
contains detailed instructions written in English. You also see a large number of boxes of papers, written
in squiggles that you do not recognise. There is a slot, and sheets of paper are coming in through the slot.

You open up the instruction book and it tells you to examine the sheets of paper coming in through the
slot. You see more unrecognisable squiggles on those sheets. Following the instructions, you open a
particular box of papers and find one that matches the squiggles. Continuing to follow the instructions,
you make some notes in English, examine other papers, and eventually, you carefully draw some
squiggles on a fresh piece of paper and put it back through the slot.

More papers come in, and as before, they only contain unrecognisable marks. Your only way of dealing
with them is to follow the instructions in the book, matching shapes, making and reading your own notes
written in English, and drawing new shapes to put back through the slot. At no stage, do you understand if
the squiggles coming in or going out mean anything.

As a well-educated student, you are highly trained at following instructions without knowing what they
mean, and without even thinking to question why the instructions exist. You happily follow along,

https://xkcd.com/632/
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correlating symbols, and drawing squiggles.

Unbeknownst to you, the people outside the room speak Chinese. (If you speak Chinese, you need to pick
some other language that you don't know, like Basque, Quechua, Uzbek, or Zulu. Chinese was the most
exotic language that Searle could think of at the time). Those people refer to the paper they put in as
"questions" and the paper that comes back as "answers". They refer to the instruction book as the
"program" and the boxes of papers as "real world knowledge".

We do not know whether your answers are interpreted as direct answers to the questions, or as requests
like "please stop asking questions and let me out of this room". We just know that no-one who looks at
your "answers" can tell that you don't speak a word of Chinese.

NB. If you're concerned about speed, and that the people outside would know you were not a speaker of
Chinese simply because of the slow speed of your response, then let's assume they don't know whether
you're awake or sleeping, or preoccupied with something else so unable to answer right away.

Searle's Question
Do you understand Chinese by doing this? Of course not. You are just following English instructions.
However, as the result of your efforts, Chinese questions are being answered, in Chinese. Searle asks: if
there is understanding going on in the Chinese Room, where is it?

Discussion: what do you think? Is there understanding going on in a system like this? If so, where?

(Extension: would it be different if you had managed to fully internalise the contents of the instruction
book and boxes of notes, and get to the point where you could answer Chinese questions as effortlessly
as a speaker of Chinese?)

The Argument
Searle sets up the Chinese Room to argue against the position of "Strong AI". This is the view that
computers that display intelligent behaviour such as question-answering really are intelligent, that such
computers really do understand. With this definition, his argument is as follows:

If Strong AI is true, then there is a program for Chinese such that if any computing system runs that1.
program, that system thereby comes to understand Chinese.
I could run a program for Chinese without thereby coming to understand Chinese.2.
Therefore Strong AI is false.3.

Responses to the Chinese Room Argument
Searle considers a range of responses to the Chinese Room Argument:

The Systems Reply: the person in the room doesn't understand, s/he is just like a CPU; it's the1.
system that understands.
The Virtual Mind Reply: the functioning room evokes a separate virtual agent which is the locus of2.
understanding.
The Robot Reply: you need to put the room into a robot and add sensors and actuators so that the3.
robot can engage with the world, and then you will have a machine that understands.
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The Brain Simulator Reply: the activity inside the room could replicate the firing of nerves inside4.
the brain of a Chinese person who understands the questions and gives answers, so therefore there
is understanding in the room.
The Other Minds Reply: how do you know that anyone else who answers Chinese questions actually5.
understands Chinese? Presumably from their behaviour. Since the room is behaving the same way,
you should credit it with understanding Chinese too.
The Intuition Reply: the Chinese Room Argument depends on Searle's unwarranted intuitions that6.
certain things are incapable of thought.

Discussion: do you find any of these responses particularly compelling? Why? Can you refute any of
them?

How Searle answers the responses
You are now ready to read the discussion of the Chinese Room Argument that appears in the Stanford
Encyclopedia of Philosophy: http://plato.stanford.edu/entries/chinese-room/

If you're game you might also like to try reading Searle's original article.

Finally
What is your position - do you believe in Strong AI?

Readings
Cole, David (2014), The Chinese Room Argument (http://plato.stanford.edu/entries/chinese-room/), Stanford
Encyclopedia of Philosophy

Searle, John (1980), Minds, brains and programs (http://philpapers.org/rec/SEAMBA), Behavioral and Brain Sciences
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6
DNA Computing a la Adleman
Computing takes place in many forms and media, from the digital computers we all use to biological
wetware. As a short taster, and to give our study of 'conventional' algorithms some broader context, we
look at a short example of one specific form of computing with biological wetware. Let's get a bit of an
overview first.

(https://www.alexandriarepository.org/wp-content/uploads/20150907223133/DNA-Computing-Context.mp4.mp4)
The following video contains the essential redux of Adleman's seminal experiments with DNA computing,
in which he devised a new solution to the traveling salesman problem.

https://www.alexandriarepository.org/wp-content/uploads/20150907223133/DNA-Computing-Context.mp4.mp4
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(https://www.alexandriarepository.org/wp-content/uploads/20150907222104/DNA-Computing-Adleman-TSP.mp4.mp4)
Interestingly, we will find that much of our previous discussion of the TSP based on 'conventional'
algorithmics remains useful, and in fact provides the basis for understanding the implications of the DNA
solution.

(https://www.alexandriarepository.org/wp-content/uploads/20150907223107/DNA-Computing-Complexity.mp4.mp4)
Of course, what these videos have illustrated is just one form of DNA computing (and only an exceedingly
small slice of bio computing in general) to give some context to our study of standard algorithmics. But I
hope you have seen that at least for some of these forms what we have learned about conventional
algorithmics can still give us a conceptual framework to understand what is going on.

https://www.alexandriarepository.org/wp-content/uploads/20150907222104/DNA-Computing-Adleman-TSP.mp4.mp4
https://www.alexandriarepository.org/wp-content/uploads/20150907223107/DNA-Computing-Complexity.mp4.mp4
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Further Reading
Computing with DNA Molecules, or Biological Computer Technology on the Horizon in Algorithmic
Adventures. Juraj Hromkovic. Springer-Verlag, 2009.
Computing with DNA. Leonard M. Adleman in Scientific American, August 1998, p. 54-61.



7 Appendix A: Extension materials

257

 

7
Appendix A: Extension materials

7.1 Being Harry Houdini
7.2 Semantic Specification of Abstract Data Types
7.3 Tail Recursion

7.3.1 Exercises: recursive list idioms in Edgy
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7.3.1.2 Solutions: Append and Reverse in Edgy
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7.1
Being Harry Houdini
standalone version

How to free yourself systematically
Imagine yourself being having your hands 'tied' together with another person as shown in the following
picture.

At first, it seems impossible to disentangle yourself without cutting the rope (or an arm!). Surprisingly it is
possible!

Your task is to find out how to do this and then describe how it can be done.

What does this have to do with Computer Science, you ask? What you have to write is effectively an
algorithm. You will see how difficult this can be if the problem doesn't just involve numbers and letters!

Steps
Find a partner to perform the 'experiment' with1.
Prepare two separate pieces of rope (about 1m-1.5m).2.
Tie loops at both ends of each rope (these must be big enough to fit your hands through, but not3.
much bigger).
Fit one rope over both your partners hands4.
Fit one end of the rope over one of your hands, pass the rest of this rope behind the rope that your5.
partner already holds, and then fit the free rope over your other hand. You should now be
entangled as on the picture shown above.
Try to find a way to disentangle this (without taking the ropes of your hands or cutting it!)6.
Don't give up! It is possible.7.
After you have figured out how to do this, write down a precise set of instructions that allows8.
someone who hasn't found the solution to free themselves.
Now find two people who are not familiar with this problem.9.
Entangle them according to steps 1-5 (provided they agree!)10.
Read your instructions back to them step by step. You can read as slowly as necessary, you can11.
even repeat the instructions, but you are not allowed to add anything to them, to answer
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questions, or to provide further explanation. You can only read out what is on the paper. Likewise,
your entangled friends are not allowed to do anything that they are not told to do in your
instructions. They must follow the instructions precisely.
Did your friends manage to disentangle themselves? Most likely not. Why did this happen?12.

Of course, The Great Houdini would not have passed on his solution ! And he probably would have done
this while submerged in a tank of water…
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7.2
Semantic Specification of Abstract Data Types

Semantics of the Stack operations
Specifying the meaning of the stack operations requires some axioms. Consider the following:

top(push(S, val)) = val

This just says that if we push some value val onto the stack, then inspect the top of the stack, we
see that value. Here are some axioms that express what push and pop do to the size of the stack:

size(push(S, val)) = size(S) + 1
size(pop(S)) = size(S) - 1

And here is what we need to say about the is_empty operation:

is_empty(new_stack) = True
is_empty(push(S, val)) = False

Finally, recall that it is an error to apply top or pop to an empty stack. Here's how we can express
that:

top(new_stack) = Error
pop(new_stack) = Error

(Note that you are not required to know these axioms. However, it will help your understanding of
the Stack ADT if you are able to interpret each of the above statements.)
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7.3
Tail Recursion

What is Tail Recursion?
There are often various different algorithms for solving a problem in computer science. We can think
about solving one problem in different ways.

For example, if we want to calculate factorial of a number x, we can think of it mathematically as a
product:-

n! = n.(n-1)...2.1

or recursively:-

n! = 1,

if (n=1), or

     n.(n-1)!

if (n>1)

Both are correct ways of thinking about the problem. In fact, if we look at the example of 5 factorial, we
can see that the recursive version can be expanded as follows, to produce the iterative version.

5!
5.4!
5.4.3!
5.4.3.2!
5.4.3.2.1!
5.4.3.2.1

Similarly, if we want to find the maximum value in a list, we can think about this iteratively or recursively.
Let's represent a list using the "cons" operator, which adds an item to the front of a list. So, for example
the list [3,5,1] can be written cons(3, cons(5, cons(1, nil))). Then we can think of a procedure to find the
maximum item in the list recursively as follows:-

max_of_list(cons(head, tail)) = head,

if tail=nil, or

                                max(head, max_of_list(tail)

otherwise

or iteratively (where tail[n] is the nth item of the tail list):-

max_of_list(cons(head, tail)) = max(nil, max(tail[length_of_tail],...
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max(tail[2], max(tail[1], head))...))

In fact, iterative functions are equivalent to recursive functions and it is always possible to convert one to
the other, using a specific kind of recursion called "tail recursion". So, what is tail recursion? To find out,
let's revisit our recursion schema and look at it a bit more closely. Specifically, we're going to look at
where the recursive call is positioned.

In tail recursion, the recursive call is the last thing that the function does (a "tail" call). Any calculations
are performed first, and then passed to the recursive call if necessary. This sometimes means that extra
parameters are required for a tail recursive function. These parameters store the values of any
intermediate calculations that are necessary.

Tail recursion is also useful, because it is often more efficient that traditional recursion. When the
computer evaluates a recursive function, it usually has to remember (or store) any remaining calculations
to be completed once the recursive call has been evaluated. If the recursion is deep or the calculations
are complicated, this can take up a lot of space. In tail recursion, however, because the final call in a tail
recursive function is the recursive call, there is no requirement to store any remaining incomplete
calculations.

NB. Tail recursion is an example of the Decrease-and-Conquer algorithm design pattern.

An example of Tail Recursion
As an example, let's look at the "sum" function, that sums up all the numbers from 0 to a given positive
number, x.

Here is the recursive version, below. Can you see that recursive call is performed and then the value that
it returns is added to x? This version is not tail recursive as the recursive call to sum_rec is not the last
thing in the function (its result is added to x).

function sum_rec(x):
    if x != 0:
        return x + sum_rec(x - 1)
    else:
        return 0

Calling sum_rec(4), results in the following sequence of calls when the function is evaluated. You can see
that the calculations cannot be performed until the base case is reached and every recursive call has
completed. This means that evaluating this function requires more and more space to store the necessary
calculations for each recursive call.

sum_rec(4)
(4 + sum_rec(3))
(4 + (3 + sum_rec(2)))
(4 + (3 + (2 + sum_rec(1))))
(4 + (3 + (2 + (1 + sum_rec(0)))))
(4 + (3 + (2 + (1 + 0)))))
10

Here's is a tail-recursive version of the same sum function which we saw above. Notice that in the this
version the recursive call is the final (or "tail") step in the recursive case, and no further calculations are
performed using its return value.
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function sum_tail_rec(x, running_total):
    if  x != 0:
        return sum_tail_rec(x - 1, running_total + x)
    else:
        return running_total

And here is the corresponding sequence of calls when the sum_rail_rec(4, 0) is evaluated. In this version,
with each evaluation of the recursive call, the variable "running_total" is updated, so the space required
to store the calculations does not increase as recursive calls are made.

sum_tail_rec(4, 0)
sum_tail_rec(3, 4)
sum_tail_rec(2, 7)
sum_tail_rec(1, 9)
sum_tail_rec(0, 10)
10

Iteration vs Tail Recursion
There is a direct correspondence between an iterative function and a tail recursive version of the same
function. In fact, an iterative function can be converted to a tail recursive function and vice versa.

Here is an iterative version of the sum function that we discussed above:-

function sum_iter(x):
    set running_total = 0
    while (x != 0):
       running_total = running_total + x
       x = x - 1
    return running_total

Compare this with the tail recursive version, initially invoked with a running_total of 0:-

function sum_tail_rec(x, running_total):
    if x != 0:
        return sum_tail_rec(x - 1, x + running_total)
    else:
        return running_total

Do you notice correspondences between the two versions above?

The iterative version uses a local variable running_total to store the results of the sum calculations it has
already made, as it loops over all the integers from x down to 0. Whereas in the tail recursive version, the
variable running_total is passed as a parameter to each recursive call and used to store an intermediate
value as each recursive call is executed.

In general, to convert an iterative function to a tail recursive function, you can use the loop termination
condition as the base case, and the body of the loop as the recursive step. The local variables in the
iterative version turn into parameters in the recursive version.
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Binary Tree Search Using Iteration and Tail Recursion
A binary search tree is a tree in which each node has at most 2 children: a left child and a right child. The
nodes of a binary search tree are in sorted order, such that a left child is always less than its parent node
and a right child is always greater than its parent node. We're going to look at a function to find a
particular item or "key" in a binary search tree.

Here is an iterative version of this function:-

function binary_tree_search_iter(node, key)
    set current_node to node
    while (current_node != null):
        if current_node == key:
            return current_node
        else if (key < current_node):
            current_node = left child of node
        else:
            current_node = right child of node
    return null

Starting at the root node of the tree, if the root_node is null then the key does not exist in the tree. If the
root_node equals the key, then the key has been found. Otherwise, if the key is less than the
current_node, we check the left child node in the same way as the root_node. And similarly, we check the
right child node if the key is greater than the current node.

If we apply the method above for converting from an iterative function to a tail recursive function, we
produce the corresponding tail recursive version:-

function binary_tree_search_tail_rec(current_node, key):
    if current_node != null:
        if current_node == key:
            return current_node
        else if (key < current_node):
            return binary_tree_search_tail_rec(left child of node, key)
        else:
            return binary_tree_search_tail_rec(right child of node, key)
    else:
        return null

Take a few moments to study the correspondence between then two versions above.

The loop termination condition in the iterative version, when the current_node is null, has become the
base case of the recursive version. And the body of the loop, in which the current node is compared to the
value of the key, has become the recursive case.

Exercises

1. Searching in a List: Iteration to Tail Recursion
The function below searches for a particular value (or key) in a list. It returns the position of the key, if it is
found, and -1 otherwise.
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find(list, key):
    for(i in 1 to length_of_list):
        if ith_item_of_list == key:
            return i
    return -1

Use the method for converting between an iterative function and a tail recursive one, to rewrite this
iterative function using tail recursion.

2. Checking for Palindromes: Tail Recursion to Iteration
Below is a tail recursive function to check whether a string is a palindrome (a string that reads the same
backwards and forwards).

function is_palidrome(input_string):
    if length of input_string > 1:
        if first character of input_string == last character of input_string:
            set shortened_string = input_string minus first & last characters
            return is_palindrome(shortened_string)
        else:
            return false
    else:
        return true

Use the conversion method described above in reverse to write an iterative version of the same function.
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7.3.1
Exercises: recursive list idioms in Edgy
Note that this material is beyond the scope of the unit, but useful for deepening your
understanding of the material.

In the previous module we have already encountered a couple of tail recursive functions on lists that you
would probably have written as iterative functions before.

It is a good exercise to define all of the typical simple functions on lists as recursive functions. The
solutions are given in the following submodules, but you should try to solve this by yourself before you
look up any solutions. Define each of the following functions on lists in Edgy, first as an iterative function,
then as a recursive function.

 (finds the minimal element in a list of numbers)
 (finds the maximal element in a list of numbers)

: (computes the number of elements of a list of numbers)
: (computes the total sum of a list of numbers)

: (returns the last element of a list)

It is more natural to think about the following functions as recursive straight away rather than defining
iterative versions first:

: this function returns a list that contains the elements from both
argument list in alternating order, for example, zip([1, 2, 3], [4, 5, 6])=[1, 4, 2, 5, 3, 6]. This should
not be too tricky to work out. Each recursive level takes the first element from each of the lists
simultaneously.

: this function returns a list that contains all elements from both
argument lists in sorted order provided that each argument list by itself is sorted already. For
example, zip([1, 3, 4], [2, 5, 6])=[1, 2, 3, 4, 5, 6]. This works essentially like the zip above, but each
recursive call just removes an element form one of the list (the next one in sequence). Working this
one out may take you a little bit longer.

Finally, the following two are rather tricky.

: returns a list that is the concatenation of the two argument
lists. To define this you need to think about the base case first. The result of appending a list x to
an empty list is just that list x. So the recursion has to reduce one of the arguments until it
becomes an empty list.

: returns a list that contains all the elements of the argument list in
inverse order. This one is particularly tricky. There are two different solutions for the definition of
reverse. The simpler one reduces one of the arguments element by element until it becomes an
empty list and relies on the above defined append function to construct the result of each recursive
step. The second solution is much more efficient and elegant but looks confusing at first. It relies on
passing an additional argument, a so-called accumulator, down the recursion to construct the
result. A nice explanation can be found here (http://www.siddharta.me/2006/04/recursion-part-2-tail-recursion.html).
Accumulators are a somewhat advanced method in recursion, and the use of accumulators is
beyond the scope of this unit.

http://www.siddharta.me/2006/04/recursion-part-2-tail-recursion.html
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7.3.1.1
Solutions: recursive list idioms in Edgy
Note that this material is beyond the scope of the unit, but useful for deepening your
understanding of the material.

 (finds the minimal element in a list of numbers)

 (finds the maximal element in a list of numbers)

: (computes the number of elements of a list of numbers)

: (computes the total sum of a list of numbers)

: (returns the last element of a list)
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: this function returns a list that contains the elements from both
argument list in alternating order, for example, zip([1, 2, 3], [4, 5, 6])=[1, 4, 2, 5, 3, 6]. This should
not be too tricky to work out. Each recursive level takes the first element from each of the lists
simultaneously.

: this function returns a list that contains all elements from both
argument lists in sorted order provided that each argument list by itself is sorted already. For
example, zip([1, 3, 4], [2, 5, 6])=[1, 2, 3, 4, 5, 6]. This works essentially like the zip above, but each
recursive call just removes an element form one of the list (the next one in sequence). Working this
one out may take you a little bit longer.
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7.3.1.2
Solutions: Append and Reverse in Edgy
Note that this material is beyond the scope of the unit, but useful for deepening your
understanding of the material.

: returns a list that is the concatenation of the two argument
lists.

: returns a list that contains all the elements of the argument list in
inverse order.

The simple inefficient solution.

The elegant, efficient solution that uses an accumulator. The use of accumulators is beyond
the scope of this unit.
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7.4
Testing Algorithm Correctness

Introduction to Testing
A common way to design an algorithm is to write down something that seems reasonable and try it out.
For example, suppose we want to check whether a graph is connected. After thinking about it for a
minute, we decide to pick a node at random, then check whether the whole graph can be reached from
that node. Here's a first attempt at defining a function to perform this work:

function connected():
    reachable = [random_node]
    while size(reachable) < size(graph)
        for n in reachable:
            foreach neighbour of n:
                add neighbour to reachable if not already there
    return size(reachable) == order

The algorithm returns True if and only if we were able to reach all of the nodes by following edges from a
random node. However, it only works for connected graphs. What does this algorithm do for unconnected
graphs? 1

If you came up with this algorithm, you would surely think of testing it on at least one disconnected graph.
You would think of this because connectedness is mentioned in the task. But would you have considered
the case of disconnected graphs when testing, say, a shortest path algorithm? Would that be a useful
thing to do or a waste of effort?

Suppose another student designed an algorithm for checking connectedness, and demonstrated that their
algorithm handled the following two cases correctly:

G1 = ({a}, {}) - connected
G2 = ({a, b}, {}) - disconnected

Would you be convinced that their algorithm was correct?

Neither case has any edges. However, the algorithm itself involves following edges, so it seems
reasonable to include a test case that has an edge. For example:

G3 = ({a, b}, {(a, b)}) - connected

If the algorithm behaved correctly for G1, G2, and G3, would you be satisfied that the other student's
algorithm is correct?

Notice how the algorithm involves iterating over all the neighbours of a node. Accordingly, we'd like to see
that it works when a node has more than one neighbour. And notice how the algorithm adds nodes to a
collection of reachable nodes, and successively builds out from that. Accordingly, we'd like to see that it
works when the graph contains paths. In other words, the algorithm should be tested on some non-trivial
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cases, i.e. including connected and disconnected graphs involving several nodes, e.g.:

G4 = ({a, b, c, d, e}, {(a, b), (a, c), (b, c), (c, d), (c, e)}) - connected
G5 = ({a, b, c, d, e}, {(a, b), (a, c), (b, c), (c, d)}) - disconnected

By now, you would probably be feeling fairly confident that the other student's algorithm is correct.

However, we run into a new problem. Testing the algorithm is time consuming! We need to test it after
each modification. Thankfully, we can implement our algorithm in a programming language, and then we
can automatically run the tests after each change to our program to check that it produced the expected
values, i.e.:

connected(G1) = True
connected(G2) = False
connected(G3) = True
connected(G4) = True
connected(G5) = False

The main purpose of testing, then, is to convince ourselves and others that the algorithm or
implementation is correct. However, testing has other uses. We can test performance, e.g. see how slow
it gets for large inputs. We can check that it does something sensible for erroneous inputs, e.g. discover
that it enters an infinite loop when given a disconnected graph as input, even if the problem statement
specified that the input was connected. A good set of tests can be useful more generally, for testing any
algorithm that has been proposed for solving a particular problem.

Before going on, reflect back on the axioms of an ADT. For example, the stack ADT satisfies the axiom
pop(push(x, s)) = x. I.e if you push an item x on stack s, then pop s, you get x back. The axioms for the
stack ADT can be used to test the correctness of any implementation of the stack ADT. This is important:
we will take some implementation, not inspect it, but merely check that it passes our tests, and then trust
that it is correct. This approach is known as "black box testing".

Black-box Testing
Black-box testing is an approach where we do not "look inside the box", i.e. we assume we've been given
an implementation in a form that we cannot inspect; we can only run it. In this case, the only thing we
have to go on when devising our test cases is the problem statement.

In the case of our algorithm for checking connectedness, we would start from the definition of
connectedness: a graph is connected if there is a path between every pair of nodes; a graph consisting of
a single node is connected. The definition mentions "single node" and "pair of nodes", so we would write
down the same three cases as before:

G1 = ({a}, {})
G2 = ({a, b}, {})
G3 = ({a, b}, {(a, b)})

Then, we might focus on the use of the term "path", and think of cases where the path is longer than a
single step, and devise larger tests cases, covering both connected or disconnected graphs. We might
even be a little creative, and try to think up some pathological examples which we think the implementer
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might not have considered, for example:

Here, we are looking for so-called "edge cases", cases which look like they might be near the boundary.
Of course, they are not. Let's consider edge cases more carefully.

Edge Cases / Boundary Values
Consider the following algorithm which generates a full binary tree of specified depth.

function generate_binary_tree(depth):
    node = new_node()
    if depth >= 0:
        child1 = generate_binary_tree(depth - 1)
        child2 = generate_binary_tree(depth - 1)
        add_edge(node, child1)
        add_edge(node, child2)
    return(node)

The depth of a tree is defined to be the length of the longest path from the root to a leaf. However, it's
easy to forget whether we should be counting edges or counting nodes when working out the depth of a
tree. Our tree of depth 3 contains paths of length 3, that pass through 3 edges. But the drawing of this
tree has 4 levels of nodes:
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Will the above algorithm generate this tree, when called with a depth of 3? Or does it contain a bug?

Any time we're given an algorithm that has an integer parameter, there's a risk of an "off-by-one" error:
we generate a tree of depth 3 when asked to generate a tree of depth 4. Or is it, we generate a tree of
depth 4 when asked to generate a tree of depth 3. That's right, it's hard to be sure which direction the off-
by-one error will go.

Off-by-one errors occur all the time in algorithms. The above algorithm has a boundary value at zero: we
can only create a tree of depth >= 0. We need to test that it produces the correct result for this value,
i.e.:

generate_binary_tree(0)

We should also check the values either side of this, i.e.:

generate_binary_tree(1)
generate_binary_tree(-1)

Notice that we have deliberately applied the algorithm to a value that is one step outside the boundary.
What does the above pseudocode do for depth=-1 2

Error Guessing
Another approach to black-box testing is to draw on our experience of the sorts of cases that tend to
cause problems. There are special cases of inputs that are easy to overlook. For example, our
connectedness algorithm said to start with a random node. It made the assumption that the graph has at
least one node. What does it do for the null graph, i.e. a graph having no nodes at all?

If our problem was to sort a list of integers, here are some cases we might want to check, that tend to
cause problems:

[] - the empty list
[1] - a singleton list
[-3] - a negative value
[3, 3, 3, 3] - a list of identical values
[1, 2, 3, 4, 5] - a list that is already sorted
[5, 4, 3, 2, 1] - a list that is as far from being correctly sorted as possible

Here we are poking at the black box, seeing if we can break it by giving it inputs that its creator might not
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have considered. So, for example, if we were testing the implementation of a stack, we might call the pop
operation on an empty stack.

When we think of graphs, what might be some pathological cases to test? Here are some you might like
to consider:

({}, {}) - the null graph
({a}, {}) - a singleton graph
({a}, {(a, a)}) - a graph with a self-loop
({a, b, c, d, e}, {}) - a graph with no edges
K5 - the complete graph on five edges
a graph which is already a solution to the problem (e.g. for computing the minimal spanning tree,
we give an input which is a tree, and expect to get the same tree back, not some new tree which
also happens to be a minimal spanning tree)

Pairwise Testing
Some functions have more than one parameter. For instance, the function to generate a tree of depth d
and branching factor b. The function has two integer parameters where d >= 0 and b > 0. Now suppose
we extended this function to allow us to specify the size s of nodes. A further boolean parameter allows us
to specify whether the graph is directed. So our function is called like this:

generate_tree(d, b, s, directed)

Notice that each parameter has two regions. For example, depth can be non-negative or negative, so we
pick an exemplar for each. Now we do this for all the parameters: d = 1 or -1; b = 2 or -2; s = 3 or -3;
directed = True or False. There are 16 possible combinations of these values.

In pairwise testing, also known as all-pairs testing, we test each combination of pairs, i.e.:

generate_tree(1, 2, 3, True)
generate_tree(1, -2, -3, False)
generate_tree(-1, 2, -3, False)
generate_tree(-1, -2, 3, False)
generate_tree(-1, -2, -3, True)

Notice that all pairs of parameters have all possibilities tested. To verify this, pick any pair of parameters,
e.g. the second and fourth, and observe the combinations: (2, True), (-2, False), (2, False), (-2, True).

We constructed the above set of pairwise tests by holding one value fixed (in boldface) and enumerating
all possibilities for the other values.

[EXAMPLE with a ternary variable, e.g. colour = red or yellow or green]

Pairwise testing is based on the observation that some bugs only exist for a combination of parameter
values, but it is very unlikely that it will take an interaction of more than two parameters in order to
expose the bug. Using this method on the above example, we reduced 16 test cases down to 5. As the
number of parameters increases, and the number of test values per parameter increases, the reduction in
effort becomes significant.

Our final step is to permit ourselves to inspect the code. Instead of a black box, we have a "white box" (or
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"glass box") that allows us to see inside.

White-box Testing
Unlike black-box testing, which starts from the specification, white-box testing starts from the
pseudocode or the code. We inspect the code and devise a variety of inputs that causes every branch to
be followed at least once.

[EXAMPLE with multiple paths]

The pseudocode or code may include components that were not explicitly stated in the problem
definition. White box testing enables us to examine these components as well.

[EXAMPLE with auxiliary function]

Voodoo Programming
Suppose that you have created a comprehensive test set and written code to run your implementation on
every test case. Now, each time your modify your implementation, you can test it in a few seconds. Now
suppose that all tests are passing except for one. So, you tweak your program and the same test fails.
You tweak it again, and it still fails. Various friends make suggestions and you follow all of them, to no
avail. After 20 minutes of this, your program has evolved in an almost random way. By this time, you're
practicing "voodoo programming", making changes that you do not fully understand in the hopes that one
of them will solve the problem. It is as if you're searching for the right magical incantation that will make
the computer do what you want. This behaviour isn't so common when the tests are performed by hand.

Instead, it is better to step through the implementation with the input values from the failed test case, to
locate the source of the problem. It could be that you used the wrong inequality symbol (< vs ≤). At this
point, you formulate a hypothesis that a certain modification to the implementation will fix the problem. If
it does not, you need to understand why not, and reverse the change you made. It seems that you
incorrectly located the source of the problem, and need to step through the implementation more
carefully.

The temptation into voodoo programming occurs when it is difficult to understand the behaviour of the
implementation, and when tests are easy to perform. A good approach is to test the sub-components of
the implementation on their own. If there are no sub-components, you may need to break down your
implementation into components that you can understand and test individually.

Delving deeper (optional)

Algorithms as Functions
An elegant approach to testing is to make sure that the algorithm or implementation is presented as a
function (not a program), with clearly defined parameters and return values. Then we have rather simple
schema for testing:

test_cases = [(G1, True), (G2, False), (G3, True), (G4, True), (G5, False)]
foreach (case, expected_result) in test_cases:
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    if connected(case) != expected_result:
        report failed test for case

Consider the case of a shortest path program that marks the path in the graph by colouring the edges. In
order to test this program, we would need to run it, then inspect the resulting graph, checking if particular
edges were the right colour (and that no other edges were that colour). It is more elegant to write our
program as a function that constructs the path and returns it. The returned path can then be checked for
(in)equality with the expected path.

[Note that it is (currently) difficult to do this in Edgy, because it is set up to modify a global graph. MORE]

[TODO: functions that modify an object in place, ie methods]

Multiple Solutions
Sometimes there is not a unique solution. For instance, there can be more than one minimum spanning
tree for a graph. We can deal with these cases in a variety of ways:

avoid test cases that involve multiple solutions
test that the result produced by the algorithm belongs to the set of known correct solutions
require the algorithm to produce all solutions
check some invariant property of the solution (such as the cost of the minimum spanning tree,
which will be the same minimal value regardless of which tree is produced)

Testing and Software Development
When we modify a program, it is tempting to only test the parts that have changed. We might have found
that our program gave the incorrect result for a particular input, and we naturally check that the modified
program gave the correct result for this input. However, it often happens that changing one part of a
program effects other parts in unpredictable ways. It is better to run the entire set of tests after every
change, in order to make sure that we haven't "regressed", introducing new bugs that have taken us
further away from the desired solution. This is known as "regression testing".

In regression testing, each time we fix a problem, we add a new test to our test suite. Now, when we fix a
new bug, we can be confident that we didn't re-introduce an earlier bug.

It is even possible to establish a series of tests before starting to do any algorithm design or
implementation. We can write down test cases by reading the problem definition, then begin the
development work with the most naive possible solution, and test it immediately. This is known as "test-
driven development".

1 It goes into an infinite loop.
2 It generates a tree of depth=0 for all negative values of depth.
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8
Appendix B: The VCE study "Algorithmics"

8.1 VCE "Algorithmics"
8.2 Textbooks for VCE "Algorithmics"
8.3 Learning for Algorithmics and Computer Science
8.4 Recommeded Progression

8.4.1 Recommended Progression - Unit 3
8.4.2 Recommended Progression - Unit 4
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8.1
VCE "Algorithmics"
In the Victorian Certificate of Education, the new Algorithmics study examines how information about the
world can be systematically represented and processed. Ultimately, this gives rise to computer programs.
However, the focus of the study is not on coding as such, but on algorithmic thinking. Computer Science is
as distinct from software development as theoretical Physics is from mechanical engineering. The study
explores rigorous methods for analysing real world problems. A key part of this is identifying salient
aspects of the real world that must be understood and represented to solve the problem. This is called
building a computational model. Modelling is thus concerned with how we represent a problem in a formal
way.

To solve a problem we then design algorithms that process these models. Algorithm Design is the central
aspect of VCE Algorithmics. This is a complex and challenging topic. The same problem usually has a
range of algorithmic solutions, and these can have markedly different properties. Sometimes, the addition
of a small amount of memory will dramatically speed up an algorithm. Sometimes, presenting the inputs
in a different sequence will dramatically slow down an algorithm. You will learn some powerful
mathematical techniques to help you understand the behaviour of different algorithms and how to design
an efficient algorithm.

Unit 3 sets out the basics of computational modelling and algorithm design. Unit 4 then expands on this
with advanced paradigms for "better" algorithm design, i.e. clever techniques that allow us to make
algorithms more efficient, often substantially so, and in some cases even to find solutions for problems
that seem impossible to solve.

Unit 4 rounds this off with a look into deeper topics in computer science. It discusses how some problems
are intrinsically harder than others, and shows some ways to identify and attack such hard problems. It
also discusses general limits of computation, specifically that some information problems cannot be
solved algorithmically at all. This naturally leads to a discussion of the possibility of artificial intelligence,
and the prospects for creating new models of computation that are inspired by physical and biological
systems.

Students will develop practical skills in algorithm development, that are independent of specific computer
coding languages and transferrable between these. Tho achieve this, a very high level algorithm
development environment will be used that abstracts from the technical details of industrial strength
coding languages. This enables students to test their algorithms interactively and study their performance
empirically.

Aims of VCE Algorithmics
This study enables students to:

understand the mathematical foundations of computer science and software engineering
design algorithms to solve practical information problems, using suitable abstract data types and
algorithm design patterns
investigate the efficiency and correctness of algorithms through formal analysis and empirically
through implementation as computer programs
reason about the physical, mathematical and philosophical limits of computability.
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Presumed knowledge
The study will presume that students are already confident in the following areas:

matrix addition, subtraction and multiplication
sets and set operations (union, intersection, power sets)
substitution and transposition in linear and non-linear relations
the construction of tables of values from a given formula
development of formulas from word descriptions
sequences and linear relations generated by recursion
logarithms and exponents
the ability to produce and interpret numerical plots
propositions, connectives and truth tables.

Students are expected to be currently enrolled in, or have successfully completed VCE Mathematical
Methods (CAS) Units 1 and 2.

Secondary and tertiary IT study
VCE Algorithmics provides the foundation for studying Computer Science and Software Engineering at
tertiary level, and some universities will offer accelerated pathways to students who have completed this
study. VCE Algorithmics also provides a conceptual framework for structured problem solving in Science,
Engineering, and Technology (STEM), and other disciplines that involve formal reasoning.

Pathways at Monash University and The University of Melbourne are outlined in the following documents:

Monash University: http://it.monash.edu/algorithmics
The University of Melbourne: http://www.cis.unimelb.edu.au/schools/algorithmics.html

VCE Algorithmics complements VCE Software Development by providing the theoretical framework for
designing and analysing algorithms which may ultimately be implemented in software systems. In VCE
Algorithmics, programming plays a secondary role as a means of verifying and evaluating algorithms.

http://it.monash.edu/algorithmics
http://www.cis.unimelb.edu.au/schools/algorithmics.html
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8.2
Textbooks for VCE "Algorithmics"
There is no real a textbook for VCE Algorithmics. The online resources are for VCE Algorithmics in front of
you are the equivalent of a traditional textbook.

However, there are some books that you might find interesting as supplementary materials to study the
broader context. Chapters of these books will be referenced in some learning modules as further reading,
however they are not required to study VCE Algorithmics and their contents is not in general aligned with
this study.

Algorithmic Adventures - From Knowledge to Magic. Juraj Hromkovic. Springer, Berlin, 2009.
The New Turing Omnibus - 66 Excursions into Computer Science. A.K. Dewdney. W.H. Freeman,
New York, 2001.

If you want to take your study of Algorithmics further there is a host of standard textbooks on the topic.
However, these are all aimed at tertiary level and much of the materials is beyond the scope of the VCE
study. The most accessible book on the formal details of Algorithmics is the following.

Introduction to the Design and Analysis of Algorithms. Anany Levitin. Addison-Wesley, Upper
Saddle River, 2012.
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8.3
Learning for Algorithmics and Computer
Science
Computer science is very different from more familiar subjects such as English or Geography. CS concepts
have been described as tightly integrated (Anthony Robins, CS Professor, University of Otago). What does
this mean?

In CS, early achievement is critical: if you don't "get" early concepts then your
misunderstandings are quickly magnified, and you're soon left far behind. Each new concept in CS
provides an 'edge' where you can attach new pieces of knowledge.

We learn at the edges of what we know
In computer science, ideas connect to each other like jigsaw pieces, more so than in other subjects you
might be studying. As you join the pieces together, you expand your skills. If you want to avoid
having your brain in a jumble, like the contents of jigsaw box emptied on floor, you need to start building
things up one piece at a time.

These are the study skills you'll need:

Check your own understanding constantly
Don't "fool yourself" that you understand an idea, concept or topic: doing the exercises is crucial
Help each other: explaining the idea to someone else is a great way to test your own
understanding
There's more than one way to solve a problem: observe how others do it and learn new problem
solving strategies
Sometimes new knowledge needs to incubate in your head for a while, so be patient while you wait
for that eureka! moment

Getting Help
There are several sources of help available to you:

the subject materials and classes are the starting point and you should do your best not to fall
behind because it is difficult to catch up
your teach
your peers
the Web - there are many excellent resources on the Web and we will use some of them in classes,
but you might find others as well



8.4 Recommeded Progression

285

 

8.4
Recommeded Progression



8.4.1 Recommended Progression – Unit 3

286

 

8.4.1
Recommended Progression - Unit 3

[1 week] Algorithmics - the heart of computer science1.
What is an algorithm? (KK 2.1)1.
Why Graphs and Networks (KK 1.5)2.
The Relation Between Algorithmics and Coding (KK 2.1)3.
Scope of the Subject and Overview4.

[15 weeks total] Algorithmic Problem Solving2.
[2 weeks] Modelling Networks (KK 1.4, 1.5)1.

What is modelling1.
Modelling with graphs2.
properties of graphs, including cyclicity, connectedness and distance3.
example domains for graph modelling, especially social networks4.
Which operations do we need to handle graphs (informal graph ADT)5.
State Diagrams6.

[1 week] First Network Algorithms (KK 1.5)2.
Illustration of simple graph algorithms1.
Following a given path2.
Executing a state diagram3.

[2 weeks] Traversal and Search in Networks (KK 2.5)3.
Breadth First Version1.
Depth First Search (DFS, iterative version only)2.

[2 weeks] How to Write Algorithms (KK 1.1-1.3, 1.6-1.8, 2.1, 2.2, 2.10)4.
Basic Concepts: Statements, Sequences, Variables, Loops, Decisions1.
Modularization2.
Collections3.

When to use which collection type1.
Abstract Data Types4.

Concept1.
ADTs for collections (list, stack, queue)2.
ADT for graphs3.
BFS, DFS revisited using proper ADT descriptions4.

[1 week] Networks of Actions: Planning and Decision Making (KK 1.5, 2.5)5.
Decision Trees1.
river-crossing puzzle2.
tic-tac-toe3.

[1 week] Algorithmic Complexity: How Fast is my Algorithm - Informal Complexity (KK 2.4,6.
2.7)

step counting1.
experience complexity hands-on (e.g. shortest path: naive exponential solution vs2.
Dijkstra)

[3 weeks] Path Finding (KK 1.3, 4, 1.8, 2.6, 2.7, 3.2)7.
Shortest Path (Dijkstra's algorithm and Bellman-Ford's algorithm)1.
Minimum Spanning Tree (Prim, Reverse Deletion)2.
Floyd's algorithm for the all-pair-shortest path problem3.
Floyd-Warshall's algorithm for transitive closure4.

[3 weeks] Recursion (KK 1.5, 2.3, 2.5)8.
The Concept of Recursion1.
What is Tail Recursion?2.
Recursive DFS3.
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Extensions of DFS4.
Best First Search1.
Iterated depth-limited DFS2.
Minimax3.

Revision and Exam Preparation3.

Remaining Key Knowledge Points
KK 2.8: to be woven into all components by going through the design process with the students
(rather than presenting the solution) and reflecting on the structure of the design process.
KK 2.9, 3.1: to be attached to the discussion of selected algorithms by incorporating
implementation and testing when these are discussed

Tests and Revision are assumed to be interleaved with the above.
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8.4.2
Recommended Progression - Unit 4
NB: No learning outcomes mapping yet

[2 weeks] Formal Algorithm Analysis & Complexity1.
[0.5 week] Working with Big-O1.
[1.5 weeks] Applied Runtime Analysis2.
(apply formal methods to Algorithms from Unit 3)

[5 weeks] Advanced Algorithm Design2.
[2 weeks] Advanced Algorithm Paradigms1.

[1 week] Divide & Conquer1.
The Master Theorem2.
[1 week] Dynamic Programming3.

[2.5 weeks] Computationally Hard Problems2.
[0.5 weeks] The Travelling Salesman Problem1.
[0.5 weeks]NP-completeness: A firm concept of "hard"2.
[1 week] Heuristics3.

[0.5 weeks] Simple approximations: Minimum Cost Spanning Tree (MCST)-1.
based Travelling Salesman Problem (TSP) solution
[0.5 weeks] Randomized Search: Simulated Annealing for Graph Colouring2.

[0.5 weeks] DNA Computing4.
[0.5 weeks] Minimax & Game Trees3.

[3 weeks] Universality of Computation and Algorithms3.
[0.5 weeks] History of Computer Science1.
[2 weeks] Hard Limits of Computation2.

[1 week] Turing Machines and the Church-Turing Thesis1.
[1 week] Undecidability and the Halting Problem2.

[0.5 weeks] Searle's Chinese Room Argument3.
[1 week + 1 week buffer] Revision4.
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9
Test Your Knowledge
The review materials are designed to test your knowledge of each outcome.

9.1 Review Unit 3, Outcome 1
9.2 Review Unit 3, Outcome 2
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9.1
Review Unit 3, Outcome 1
On completion of this unit the student should be able to devise formal representations for modelling
various kinds of information problems using appropriate abstract data types, and apply these to a real-
world problem.

~VCE Algorithmics (HESS) Study Design 2017-2019

Test Your Knowledge
Start Quiz (https://www.alexandriarepository.org/app/WpProQuiz/231)

Modelling a real-world problem
Show "ReviewTask-open-ended.docx"
(https://docs.google.com/viewer?url=https%3A%2F%2Fwww.alexandriarepository.org%2Fwp-content%2Fuploads%2F20170130150103%2FR
eviewTask-open-ended.docx&hl=en_GB&embedded=true)
Download (DOCX, 22KB) (https://www.alexandriarepository.org/wp-content/uploads/20170130150103/ReviewTask-open-ended.docx)

https://www.alexandriarepository.org/app/WpProQuiz/231
https://docs.google.com/viewer?url=https%3A%2F%2Fwww.alexandriarepository.org%2Fwp-content%2Fuploads%2F20170130150103%2FReviewTask-open-ended.docx&hl=en_GB&embedded=true
https://www.alexandriarepository.org/wp-content/uploads/20170130150103/ReviewTask-open-ended.docx
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9.2
Review Unit 3, Outcome 2
On completion of this unit the student should be able to design algorithms to solve information problems
using basic algorithm design patterns, and implement the algorithms.

~VCE Algorithmics (HESS) Study Design 2017-2019

Test Your Knowledge
Start Quiz (https://www.alexandriarepository.org/app/WpProQuiz/235)

Real-world Problem
A palindrome is a word that is spelled the same forward and backward. For example, rotor and redder
are palindromes, but motor is not.

Construct a recursive algorithm that when given a string of any size as input, the algorithm will return
True if the string is a palindrome, otherwise False.

https://www.alexandriarepository.org/app/WpProQuiz/235
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